109011 (Дифракция электронов. Электронный микроскоп), страница 4

2016-07-31СтудИзба

Описание файла

Документ из архива "Дифракция электронов. Электронный микроскоп", который расположен в категории "". Всё это находится в предмете "наука и техника" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "курсовые/домашние работы", в предмете "наука и техника" в общих файлах.

Онлайн просмотр документа "109011"

Текст 4 страницы из документа "109011"

Одна из особенностей отражательного электронного микро­скопа — различие увеличений в различных направления вдоль плоскости объекта связано с наклонным положением объекта по от­ношению к оптической оси микроскопа. Поэтому увеличение такого микроскопа характеризуют обычно двумя величинами: увеличением в плоскости падения пучка электронов и увеличением в плоскости, пер­пендикулярной плоскости падения.

Растровый электронный микроскоп основан на использовании предварительно сформированного тонкого электронного луча (зонда), положением которого управляют с помощью электромагнитных полей. Это управление (сканирование) во многом аналогично процессу раз­вертки в телевизионных кинескопах. Электронный зонд последовательно проходит по поверхности исследуемого образца. Под воздействием электронов пучка происходит ряд процессов, характер­ных для данного материала и его структуры. К их числу относятся рассеяние первичных электронов, испускание (эмиссия) вторичных электронов, появление электронов, прошедших сквозь объект (в слу­чае тонких объектов), возникновение рентгеновского излучения. В ряде специальных случаев (люминесцирующие материалы, полупро­водники) возникает также световое излучение. Регистрация электронов, выходящих из объекта, а также других видов излучения (рентгеновского, светового) дает информацию о различных свойствах микроучастков изучаемого объекта. Соответственно этому системы индикации и другие элементы растровых микроскопов различаются в зависимости от вида регистрируемого излучения.

Синхронно с разверткой электронного зонда осуществляется развертка луча большого кинескопа. Рассмотрим работу растрового электронного микроскопа в режиме индикации тока вторичных элек­тронов. В этом случае величина вторичного электронного тока определяет глубину модуляции яркости на экране кинескопа. Растро­вый электронный микроскоп такого типа позволяет получить увеличение 100 100 000 при достаточной контрастности изобра­жения. Разрешающая способность растровых электронных микроскопов определяется диаметром электронного зонда и в случае получения изображения в электронных лучах составляет 300À. Растровые элек­тронные микроскопы позволяют изучать, например, так называемые p-n переходы в полупроводниках.

Из электронных микроскопов упомянем зеркальный электронный микроскоп, основной особенностью которого является чувствитель­ность к микроскопическим электрическим и магнитным полям на отражающем массивном объекте. При этом достигается разрешение деталей порядка 1000А и увеличение почти в 2000*. Работа такого микроскопа основана на действии микроскопических электрических и магнитных полей на электронный поток. Зеркальный электронный мик­роскоп позволяет изучать, например, доменную структуру ферромагнитных материалов, структуру сегнетоэлектриков.

В теневом электронном микроскопе, так же как и в растровом, формируется электронный зонд, однако положение его остается неиз­менным. Электронные лучи зонда служат для получения увеличенного теневого изображения объекта, помещенного в непосредственной бли­зости от зонда. Образование изображения обусловлено рассеянием и поглощением электронов различными участками объекта. Следует от­метить, что интенсивность конечного изображения в теневом электронном микроскопе незначительна, поэтому обычно в них исполь­зуются усилители света типа электронно-оптических преобразо­вателей.

Важной разновидностью электронных микроскопов растрового типа является микрорентгеноспектральный анализатор. Прибор осно­ван на возбуждении так называемого характеристического рентгеновского излучения атомов малого участка поверхности - об­разца с помощью тонкого высокоскоростного электронного зонда. Электронный зонд с помощью системы развертки обегает исследуе­мую поверхность. При торможении электронов на поверхности возникает наряду с так называемым тормозным излучением характери­стическое рентгеновское излучение, свойства которого существенно определяются строением электронных оболочек в атомах вещества. Это излучение обязано своим возникновением энергетическим перехо­дом между глубокими энергетическими уровнями атомов.

Возникающее характеристическое излучение регистрируется с помощью рентгеноспектральной аппаратуры. Диаметр электронного зонда может изменяться от 360 до 0,5 мкм, а размер просматриваемой площадки представляет собой квадрат со стороной 360, 180, 90 или 45 мкм. В одном из приборов такого типа скорость анализа по одному хи­мическому элементу соответствует движению зонда 8 или 96 мкм/мин (при механическом перемещении объекта). Анализировать можно все элементы периодической системы элементов Менделеева, легких (от атомного номера 11 - натрия).минимальный объем вещества, поддаю­щегося количественному анализу, составляет 0,1 мкг. С помощью микрорентгеновского анализатора получают распределение физико-химического состава вдоль исследуемой поверхности.

В СССР серийно выпускается (выпускался) микрорентгеновский анализатор типа МАР-1 (диаметр зонда около 1 мкм, наименьшая ана­лизируемая площадь 1мкм2). Приборы такого вида находят применение в электронной промышленности и в других областях науки и техники.

Читатель, видимо, обратил внимание на тот факт, что в элек­тронных микроскопах не достигается разрешающая способность, предсказываемая теорией. В чем же дело? Вспомним, что в формиро­вании изображения в электронных микроскопах важную роль играют элементы электронной оптики, позволяющие осуществлять управле­ние электронными пучками. Этим элементам — электронным линзам свойственны различного рода отклонения от идеального (требуемого расчетом) распределения электрических и магнитных полей. Положе­ние здесь во многом аналогично ограничениям в оптической микроскопии, связанным с неточностью изготовления оптических линз, зеркал и других элементов. Кроме того, ряд трудностей связан с осо­бенностями изготовления и работы источников электронных потоков (катодов), а также с проблемой создания потоков, в которых электроны мало отличаются по скоростям. В соответствии с этими фактами, дей­ствующими в реальных условиях, различают определённые виды искажений в электронных микроскопах, используя при этом терминоло­гию, заимствованную из световой оптики.

Основными видами искажений электронных линз в просвечи­вающих микроскопах являются сферическая и хроматическая аберрации, а также дифракция и приосевой астигматизм. Не останав­ливаясь на происхождении различных видов искажений, связанных с нарушениями симметрии полей и взаимным расположением элементов электронной оптики, упомянем лишь о хроматической аберрации. По­следний вид искажений аналогичен возникновению окрашенных изображений в простых биноклях и лупах. Использование спектрально чистого монохроматического света в оптике (вместо белого) устраняет этот вид искажений. Аналогично этому в электронной микроскопии ис­пользуют по возможности пучки электронов, скорости которых отличаются мало (вспомним соотношение =h/(mv) äëÿ ýëåêòðîíà!). Этого достигают применением высокостабильных источников элек­трического питания.

Близким “родственником” электронного микроскопа является электронограф прибор, использующий явление дифракции элек­тронов, той самой дифракции, которая в своё время подтвердила наличие волновых свойств у электронов и ставит в наши дни предел разрешения в электронном микроскопе. В случае электронов объек­тами, в которых может происходить дифракция на периодической структуре (аналогичной объёмной дифракционной решётке в оптике), служат кристаллические структуры. Известно, что в кристаллах атомы расположены в строгом геометрическом порядке на расстояниях по­рядка единиц ангстрем. Особенно правильно это расположение в так называемых монокристаллах. При взаимодействии электронов с та­кими структурами возникает рассеяние электронов в преимуществен­ных направлениях в соответствии с предсказываемыми теорией соотношениями. Регистрируя рассеянные электроны (например, фотографируя их), можно получать информацию об атом­ной структуре вещества. В современных условиях электронография широко применяется при исследованиях не только твёрдых, но и жид­ких, газообразных тел. О виде получаемых электронограмм можно судить по фотографиям (см. рис.6).

Рис. 6. Электорнограмма высокого разрешения (окись цинка):

вверху электронограмма; внизу увеличенное изображение участка А.

В нашей стране и за рубежом применяются специализированные электронографы промышленного типа. Кроме того, в некоторых элек­тронных микроскопах предусмотрена возможность работы в режиме электронографии.

Следует заметить, что с точки зрения физики получение элек­тронограмм представляет собой процесс, во многом близкий процессу получению рентгенограмм в рентгеноструктурном анализе. Действи­тельно, если в электрографии используется дифракция электронов, то в рентгеноструктурном анализе происходит дифракция рентгенов­ских лучей на атомных структурах. Естественно, что каждый из этих методов имеет свою область применения.

Особенности работы с электронным микроскопом.

Остановимся кратко на основных приемах работы в электронной микроскопии. Естественно, что эти приемы своеобразны, учитывая сверхмалые размеры объектов, подлежащих исследованию. Так, на­пример, в биологических исследованиях находят применения “сверхтонкие ножи” - микротомы, позволяющие получать срезы биоло­гических объектов толщиной менее 1 мкм.

Главные особенности методики электронной микроскопии опре­деляются необходимостью помещения объекта исследования внутрь колонны электронного микроскопа, т.е. в вакуум и обеспечения условий высокой чистоты, так как малейшие загрязнения могут существенно исказить результаты. Для просвечивающего электронного микроскопа объект приготовляется в виде тонких пленок, в качестве которых мо­гут служить различного рода лаки, пленки металлов и полупроводников, ультратонкие срезы биологических препаратов. Кроме того, объектами исследования могут быть тонко измельченные (диспергированные) совокупности частиц. Обычно в просвечивающих микроскопах, работающих при напряжениях 50-100 кв, толщина объек­тов не может превышать 200 А(для неорганических веществ) и 1000 А (для органических). Биологические объекты в большинстве случаев приходится контрастировать, т.е. “окрашивать” (солями тяжелых ме­таллов), оттенять напылением металлов (платиной, палладием и др.) и использовать ряд других приемов. Необходимость контрастирования вызвана тем, что большинство биологических объектов содержит атомы легких элементов (с малым атомным номером) - водород, угле­род, азот, кислород, фосфор и т.д. в то же время толщина объектов, интересных для биологии и медицины, составляет величину порядка 50 А. Без контрастирования при электронно-микроскопических ис­следованиях вирусов наблюдаются бесструктурные пятна, а отдельные молекулы нуклеиновых кислот вообще неразличимы. Ис­пользование методов контрастирования позволяет эффективно применить электронную микроскопию в биологических исследованиях и в том числе при исследованиях больших молекул (макромолекул) см., например, рис. 7.

Рис. 7. РНК из вируса табачной мозаики (из раствора с ионной силой 0,0003 мкм).

В ряде случаев при исследовании, например, массивных объек­тов в технике широкое применение находит метод получения отпечатков, который заключается в изготовлении и последующем ис­следовании в микроскопе копий поверхностей объектов.

Используются как естественные отпечатки (тонкие слои оки­слов), так и искусственные, получаемые путем нанесения (напыления, осаждения) пленок кварца, углерода и других веществ. Наибольшее разрешение ( 10 А) позволяют получить угольные реплики, которые находят широкое применение как в технике, так и в биологии.

При наблюдении электронно-микроскопическими методами влажных объектов ( в том числе живых клеток) используются вакуумно-изолированные газовые микрокамеры. Объекты исследования помещаются в электронных микроскопах на тончайшие пленки - под­ложки, которые крепятся на специальных сетках, изготовляемых обычно из меди электролитическим способом. Эти пленки должны удовлетворять целому ряду требований, поскольку относительно большая толщина их, а также сильное рассеяние ими электронов при­водят к резкому ухудшению качества изображения объекта. Кроме того, материал таких пленок должен обладать хорошей теплопровод­ностью и высокой стойкостью к электронной бомбардировке.

Кстати, об электронной бомбардировке объекта исследования и ее последствиях. При попадании электронов на объект они выделяют энергию, примерно равную кинетической энергии их движения. В ре­зультате могут происходить местный разогрев и разрушение участков объекта.

Электронный микроскоп часто используется для микрохимичес­кого анализа исследуемого вещества согласно методу, предложенному М. И. Земляновой и Ю. М. Кушниром. По существу этот метод аналоги­чен методу микрохимического анализа с помощью оптического микро­скопа. В данном случае электронный микроскоп используется в качес­тве устройства, способного обнаружить малые количества искомого вещества (по форме и структуре кристаллов и т.п.). на поверхность водного раствора, в котором предполагается наличие искомых ионов, наносится капля 1 — 1,5% раствора нитроклетчатки в амилацетате. Капля растекается по поверхности жидкости и образует коллодиевую пленку, на которую наносится капля реагента. Ионы реагента прони­кают (диффундируют) сквозь пленку и, взаимодействуя с раствором, образуют на поверхности пленки кристаллы, которые содержат ионы, подлежащие обнаружению. После специальной очистки кусочек пленки с кристалликами помещается в электронный микроскоп, и на основе изучения этих кристалликов оказывается возможным дать ответ о на­личии искомых ионов, а в ряде случаев — и об их концентрации. Такой метод микрохимического анализа характеризуется высокой чувстви­тельностью (на 2 — 3 порядка большей по сравнению с другими спосо­бами). Например, ионы марганца могут быть обнаружены в растворе с концентрацией не ниже 10-11 нормального раствора при содержании иона 10-11 г (по данным А. М. Решетникова).

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5232
Авторов
на СтудИзбе
423
Средний доход
с одного платного файла
Обучение Подробнее