47728 (Нейронные сети), страница 2

2016-07-31СтудИзба

Описание файла

Документ из архива "Нейронные сети", который расположен в категории "". Всё это находится в предмете "информатика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "47728"

Текст 2 страницы из документа "47728"

Возникает вопрос, какие функции могут быть аппроксимированы с помощью нейронной сети? Ответ дается обобщенной теоремой Стоуна. Не вдаваясь в математические тонкости ее можно интерпретировать как утверждение об универсальных аппроксимационных возможностях произвольной нелинейности: с помощью линейных операций и каскадного соединения можно из произвольного нелинейного элемента получить устройство, вычисляющее любую непрерывную функцию с любой наперед заданной точностью.

То есть нейросеть с произвольной функцией активации может аппроксимировать произвольную непрерывную функцию. При этом, как оказывается всегда достаточно трехслойной сети. Нужна большая точность – просто добавь нейронов.

Как частный случай задачи аппроксимации можно рассмотреть задачу предсказания временных рядов. На вход сети мы подаем некоторое количество предыдущих значений, затем, а на выходе ожидаем получить значение в следующий момент времени.

Мы рассмотрели некоторые возможности только многослойных сетей прямого распространения. Ясно, что они могут практически все, что угодно. Возникает вопрос, как подобрать такие весовые коэффициенты, чтобы сеть решала задачу распознавания или аппроксимировала некоторую функцию? Замечательное свойство нейронных сетей состоит в том, что их этому можно научить.

Алгоритмы обучения бывают 3-х видов:

Обучение с учителем. При этом сети предъявляется набор обучающих примеров. Каждый обучающий пример представляют собой пару: вектор входных значений и желаемый выход сети. Скажем, для обучения предсказанию временных рядов это может быть набор нескольких последовательных значений ряда и известное значение в следующий момент времени. В ходе обучения весовые коэффициенты подбираются таким образом, чтобы по этим входам давать выходы максимально близкие к правильным.

Обучение с поощрением. При этом сети не указывается точное значение желаемого выхода, однако, ей выставляется оценка хорошо она поработала или плохо.

Обучение без учителя. Сети предъявляются некоторые входные векторы и в ходе их обработки в ней происходят некоторые процессы самоорганизации, приводящие к тому, что сеть становиться способной решать какую-то задачу.

Рассмотрим один из самых популярных алгоритмов обучения, так называемы, алгоритм обратного распространения. Это один из вариантов обучения с учителем. Пусть у нас имеется многослойная сеть прямого распространения со случайными весовыми коэффициентами. Есть некоторое обучающее множество, состоящее из пар вход сети – желаемый выход . Через Y обозначим реальное выходное значение нашей сети, которое в начале практически случайно из-за случайности весовых коэффициентов.

Обучение состоит в том, чтобы подобрать весовые коэффициенты таким образом, чтобы минимизировать некоторую целевую функцию. В качестве целевой функции рассмотрим сумму квадратов ошибок сети на примерах из обучающего множества.

(6)

где реальный выход N-го выходного слоя сети для p-го нейрона на j-м обучающем примере, желаемый выход. То есть, минимизировав такой функционал, мы получим решение по методу наименьших квадратов.

Поскольку весовые коэффициенты в зависимость входят нелинейно, воспользуемся для нахождения минимума методом наискорейшего спуска. То есть на каждом шаге обучения будем изменять весовые коэффициенты по формуле

(7)

где весовой коэффициент j-го нейрона n-го слоя для связи с i-м нейроном (n-1) - го слоя. Параметр называется параметром скорости обучения.

Таким образом, требуется определить частные производные целевой функции E по всем весовым коэффициентам сети. Согласно правилам дифференцирования сложной функции

(8)

где - выход, а - взвешенная сума входов j-го нейрона n-го слоя. Заметим, что, зная функцию активации, мы можем вычислить . Например, для сигмоида в соответствии с формулой (5) эта величина будет равняться

. (9)

Третий сомножитель / есть ни что иное, как выход i-го нейрона (n-1) - го слоя, то есть

. (10)

Частные производные целевой функции по весам нейронов выходного слоя теперь можно легко вычислить. Производя дифференцирование (6) по и учитывая (8) и (10) будем иметь

(11)

Введем обозначение

. (12)

Тогда для нейронов выходного слоя

. (13)

Для весовых коэффициентов нейронов внутренних слоев мы не можем сразу записать, чему равен 1-й сомножитель из (9), однако его можно представить следующим образом:

(14)

Заметим, что в этой формуле 1-е два сомножителя есть не что иное, как . Таким образом, с помощью (14) можно выражать величины для нейронов n-го слоя через для нейронов (n+1) - го. Поскольку для последнего слоя легко вычисляется по (13), то можно с помощью рекурсивной формулы

(15)

получить значения для вех нейронов всех слоев.

Окончательно формулу (7) для модификации весовых коэффициентов можно записать в виде

. (16)

Таким образом, полный алгоритм обучения нейронной сети с помощью алгоритма обратного распространения строиться следующим образом.

Присваиваем всем весовым коэффициентам сети случайные начальные значения. При этом сеть будет осуществлять какое-то случайное преобразование входных сигналов и значения целевой функции (6) будут велики.

Подать на вход сети один из входных векторов из обучающего множества. Вычислить выходные значения сети, запоминая при этом выходные значения каждого из нейронов.

Рассчитать по формуле (13) . Затем с помощью рекурсивной формулы (15) подсчитываются все остальные и, наконец, с помощью (16) изменение весовых коэффициентов сети.

Скорректировать веса сети:

.

Рассчитать целевую функцию (6). Если она достаточно мала, считаем сеть успешно обучившейся. Иначе возвращаемся на шаг 2.

Перечислим некоторые проблемы, возникающие при применении этого метода.

Локальные минимумы

Алгоритм обратного распространения реализует градиентный спуск по поверхности ошибки в пространстве весовых коэффициентов и поэтому может застревать в локальных минимумах. При этом рядом может иметься другой, значительно более глубокий минимум.

Для преодоления этой трудности обучение сети проводят несколько раз и затем выбирают тот вариант обученной сети, который дает наилучшие результаты. Другой метод заключается в том, что сеть можно вывести из локального минимума, на короткое время, увеличив скорость обучения. Иногда, к изменению весовых коэффициентов, вычисленному по алгоритму, добавляют шум. Это также позволяет сети «выпрыгивать» из локальных минимумов.

Паралич сети

В процессе обучения сети значения весов могут в результате коррекции стать очень большими величинами. Это может привести к тому, что все или большинство нейронов будут функционировать при очень больших аргументах функции активации , в области, где производная функции очень мала (как, например для сигмоидной функции активации). Так как величина коррекции весов пропорциональна этой производной, то процесс обучения может практически замереть. Для преодоления такой ситуации существуют модификации алгоритма, учитывающие лишь направление антиградиента и не учитывающие его величину.

Таким образом, мы подробно рассмотрели один из нейронных сетей. Разобрали задачи, решаемые такими сетями (многомерная классификация, аппроксимация функций). Получили один из алгоритмов обучения такой сети. Разумеется, это все лишь малая часть того обширного направления, которое представляют собой нейронные сети.

Хотя многие задачи успешно решаются с помощью нейронных сетей, нужно понимать, что путь от нынешнего состояния работ в этой области к глубокому пониманию принципов работы мозга, по-видимому, очень длинен. Модели в виде нейросетей скорее отвечают на вопрос, как могли бы работать те или иные системы, в каких-то чертах согласующиеся с данными об архитектуре, функциях и особенностях мозга. Тем ни менее исследования в нейронауке уже открыли пути для создания новых компьютерных архитектур и наделению вычислительных систем своеобразной интуицией, способностью к обучению и обобщению поступающей информации, то есть возможностями, которые раньше считались прерогативами живых систем.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5173
Авторов
на СтудИзбе
436
Средний доход
с одного платного файла
Обучение Подробнее