kursovik (Разработка программы на Ассемблере), страница 2

2016-07-31СтудИзба

Описание файла

Документ из архива "Разработка программы на Ассемблере", который расположен в категории "". Всё это находится в предмете "информатика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "информатика, программирование" в общих файлах.

Онлайн просмотр документа "kursovik"

Текст 2 страницы из документа "kursovik"

mov bx,a;обмен данными между ячейками памяти, в

mov a,ax;отличие от команды xchg ;

mov b,bx;нельзя mov a,b;

ENDM

Вызов этого макроса производится командой: Swap m,n

13.  .MODEL - определяет размер памяти под данные и код программы.

      .MODEL tiny;под программу,данные и стек отводится один общий сегмент (64 Kb).

14.  PROC - определяет начало подрограммы.

Print PROC NEAR

;здесь команды подпрограммы

Print ENDP

....

call Print;вызов подпрграммы.

15.  .STACK - определяет размер стека.

      .STACK 200h; выделяет 512 байтов для стека.

16.  .RADIX base - определяет систему счисления по умолчанию, где base - основание системы счисления: 2, 8, 10, 16.

.RADIX 8

oct = 77; oct равно 63d.

17.  ; - начало комментария.

 

КОМАНДЫ ПЕРЕСЫЛКИ

 

1. MOV DST,SRC; переслать (SRC) в (DST). Здесь и далее содержимое регистра, например регистра AL будет обозначаться - (AL) или (al), а пересылка в комментарии будет обозначаться знаком <--  .

mov al,ch; (al) <-- (ch).

mov cx,dx;

mov bh,[mems];содержимое ячейки памяти с символическим адресом

mems переслать в регистр BH. Можно: mov bh,mems.

mov al,[bx];переслать в аккумулятор содержимое ячейки памяти

с адресом находящимся в регистре BX .

mov bx,OFFSET src;поместить в BX смещение адреса

ячейки памяти SRC, в текущем сегменте.

mov al,table[bx];загрузить в аккумулятор элемент таблицы байтов

с символическим адресом первого элемента table и отстоящий

от этого элемента на (bx) байтов. Другие варианты:

mov al,[table + bx] или

mov al,table + bx.

До выполнения команды

mov al,[table + bx]

     Регистр BX

Регистр AL

Адрес

Код

0010

XX

0800 (table)

08xx

xx

0810

58

После выполнения команды

mov al,[table + bx]

     Регистр BX

Регистр AL

Адрес

Код

0010

58

0800 (table)

08xx

xx

0810

58

2. PUSH RP; поместить на вершину стека содержимое пары регистров RP (например push bx).

3. POP RP; снять с вершины стека два байта и поместить в пару RP (например pop ax).

4. XCHG DST, SRC; поменять местами содержимое (DST) и (SRC). Оба операнда не могут быть одновременно содержимым ячеек памяти.

5. XLAT SRC; извлечь из таблицы с начальным адресом SRC байт данных имеющий номер от начала таблицы = (AL), и поместить его в AL. Адрес SRC должен находиться в регистре BX. Другой вариант: XLATB.

....

.DATA

src DB 15d,10h,00110101b,'A','B',166d

.CODE

....

mov al,2; в результате выполнения этих трех команд

mov bx,OFFSET src; в регистр AL будет загружен код

xlatb; 00110101b = 35h = 53d = ASCII'5'

6. IN ACCUM, PORT; поместить в аккумулятор AL или AX байт или слово из порта с адресом PORT. Если адрес порта <= FF то адрес порта может указываться непосредственно, если адрес порта > FF, то адрес порта указывается косвенно, через содержимое регистра DX (специальная функция регистра общего назначения).

in al,0a5h;ввести в AL байт данных из ВУ с адресом порта A5h ....

mov dx,379h;ввести в аккумулятор AL байт данных из

in al,dx;внешнего устройства с адресом порта 379h

7. OUT PORT, ACCUM; переслать из аккумулятора AL или AX байт или слово в ВУ с символическим адресом PORT.

out 0ffh,al;

....

mov dx,37Ah;переслать слово данных из AX в ВУ с адре-

out dx,ax;сом порта 37Ah

8. LEA RP,M; загрузить в регистр RP эффективный адрес (смещение) ячейки памяти с символическим адресом M.

lea di, rus; аналог этой команды - mov di, OFFSET rus.

 

АРИФМЕТИЧЕСКИЕ КОМАНДЫ

 

1. ADD DST, SRC; сложить содержимое SRC и DST и результат переслать в DST.

   add al, [mem_byte]; mem_byte однобайтовая ячейка памяти

   add [mem_word], dx; mem_word двухбайтовая ячейка памяти

   add ch,10001010b;

2. INC DST; увеличить (DST) на 1 (инкремент (DST)).

inc si; (SI) <-- (SI) + 1.

inc count; (count) <-- (count) + 1.

3. SUB DST, SRC; вычесть (SRC) из (DST) и результат поместить в DST.

4. DEC DST; декремент (DST).

5. CMP DST, SRC; сравнить содержимое DST и SRC. Эта команда выполняет вычитание (SRC) из (DST)   но разность не помещает в DST и по результату операции воздействует на флаги.

условие флаги

OF SF ZF CF

DST > SRC 0/1 0 0 0

DST = SRC 0 0 1 0

DST < SRC 0/1 1 0 1

0/1 - означает, что флаг может быть равен 0 или 1 в зависимости от значений операндов. Флаги OF и SF имеют смысл при операциях со знаковыми числами, CF для беззнаковых чисел. Флаг переполнения OF устанавливается в 1, если в результате операции сложения или вычитания значения переноса в старшиий двоичный разряд и из старшего двоичного разряда не совпадают. По другому определению OF принимает значение 1, если результат превышает диапазон представления соответствующих чисел. Пусть DST > SRC и оба являются однобайтовыми числами, тогда:

DST: 1. (+127) 2. (+127)

SRC: - (+2) - (-2)

------- -------

(+125) (OF)=0 (+129)? (OF)=1

Во втором примере результат превышает диапазон: -128 <= x < = +127. Флаг знака SF устанавливается в '1', если старший бит результата операции равен 1, т.е. при отрицательном результате. В противном случае сбрасывается. Флаг нуля ZF устанавливается в '1' при нулевом результате (!), иначе сбрасывается. Флаг переноса CF = 1, если есть перенос из старшего разряда при сложении или есть заем в младший разряд при вычитании. Иначе флаг сбрасывается. Для первого примера SF = ZF = CF = 0, для второго: SF = 1, ZF = CF = 0.

 

ЛОГИЧЕСКИЕ КОМАНДЫ И КОМАНДЫ СДВИГА

 

1. AND DST, SRC; поразрядное логическое "И".

   mov dh, 10101100b;

   and dh, 0f0h;

в результате выполнения этих двух команд содержимое DH станет равно 10100000b.

2. OR DST, SRC; поразрядное логическое "ИЛИ".

or bx,dx;если (BX)=5F0Fh,а (DX)=7777h,то после операции

;(BX)=7F7Fh.

BX

0101 1111 0000 1111 = 5F0F

DX

0111 0111 0111 0111 = 7777

BX (результат)

0111 1111 0111 1111 = 7F7F

3. XOR DST, SRC; поразрядное логическое "исключающее ИЛИ".

xor al,55h;если (AL)=5ah, то после операции (AL)=0fh.

4. NOT DST; инверсия всех битов приемника.

5. TEST DST, SRC; выполняет операцию AND над операндами, но воздействует только на флаги и не изменяет самих операндов.

6. SHR DST, CNT; логический сдвиг вправо, освобождающиеся слева биты заполняются нулем, крайний правый бит выталкивается во флаг CF. Операнд DST может быть ячейкой памяти.

mov bl,10110010b;(CF) = x

shr bl,1;(BL) = 01011001,(CF) = 0

до  сдвига

         

1

0

1

1

0

0

1

0

        

(CF)=X

после сдвига

0--->

0

1

0

1

1

0

0

1

------>

(CF)=0

 

mov cl,4;

shr bl,cl;(BL) = 00000101,(CF) = 1.

7. SHL DST, CNT; логический сдвиг влево.

8. RLC DST, CNT; циклический сдвиг влево через перенос

9. RRC DST, CNT;циклический сдвиг вправо через перенос

10. ROR DST, CNT;циклический сдвиг влево

11. ROL DST, CNT;циклический сдвиг вправо

 

КОМАНДЫ ПЕРЕДАЧИ УПРАВЛЕНИЯ

 

1. CALL SUBR; вызов подпрограммы с адресом SUBR;

call delay;

mov ....

2. RET; возврат из подпрограммы к оператору следующему непосредственно за CALL, то есть в приведенном выше примере к MOV ..

3. JMP NAME; безусловный переход к команде с символическим адресом NAME.

jmp short name;переход к метке name, отстоящей не более

;чем на -128 или +127 байтов.

jmp near name;переход к метке name, отстоящей не более

;чем на 65535 байтов, в одном сегменте.

jmp name;аналогично jmp near name;

4. JA NAME или JNBE NAME; условный переход, если, например, в результате сравнения CMP DST, SRC приемник по абсолютной величине больше источника, то перейти к метке name.

5. JB NAME или JNAE NAME; условный переход, если, например, в результате сравнения CMP DST, SRC приемник по абсолютной величине меньше источника, то перейти к метке name (команды п4 и п5 выполняются по результатам выполнения операций над беззнаковыми числами).

6. JZ NAME или JE NAME; перейти, если результат операции влияющей на флаг нуля - нулевой (переход по "нулю").

7. JNZ NAME или JNE NAME; переход по "не нулю". (команды п6 и п7 выполняются по результатам выполнения операций над числами cо знаком ).

 

КОМАНДЫ УПРАВЛЕНИЯ ЦИКЛАМИ

 

1. LOOP NAME; эта команда неявно уменьшает (CX) на 1 и осуществляет переход к ближней метке, если (CX) не равно 0.

....

mov cx,64h;блок операторов от метки syc до loop syc

syc: ....;будет выполнен 100 раз.

....

loop syc

2. LOOPZ NAME или LOOPE NAME кроме того осуществляет проверку ZF флага. Поэтому цикл заканчивается по условию, когда (CX) = 0 или (ZF) = 0 или и то и другое вместе. Т.о. эта команда служит для обнаружения первого ненулевого результата.

3. LOOPNZ, LOOPNE - выход из цикла по "нулю".

....

mov cx,1000d;цикл может быть завершен раньше 1000

next: .... ;прохода,если содержимое аккумулятора

.... ;станет равным 129,т.е. равным ASCII коду

cmp al,'Б';буквы Б.

loopnz next

9.3.9 КОМАНДЫ ОБРАБОТКИ СТРОК (ЦЕПОЧЕК БАЙТОВ)

 

1. LODSB; команда lodsb загружает байт адресованный регистром SI из сегмента данных, и увеличивает SI на 1, если перед этим была введена команда CLD (очистить флаг направления DF) и уменьшает SI на 1, если была использована команда STD (установить флаг направления).

....

.DATA

string DB 'abcdefg'

.CODE

....

cld;после выполнения этих команд в AL будет

mov si,OFFSET [string+2]; загружен ASCII код 'с'

lodsb;причем содержимое SI будет указывать на 'd'.

2. MOVSB; эта команда перемещает один байт из ячейки памяти с адресом в регистре SI в ячейку памяти с адресом в регистре DI и увеличивает (SI) и (DI) на 1. Значение SI может находиться, как в сегменте данных DS, так и в дополнительном сегменте ES. Значение DI может находиться только в дополнительном сегменте ES.

....

.DATA

msg DB 'Всё O.K.'

LEN = $ - msg;LEN равно 8

.CODE

....

cld

lea si,msg;в SI адрес источника

mov ax,0b800h;начало сегмента видеопамяти

mov es,ax;поместить в дополнительный сегмент

lea di,es:(0a0h * 3);4-я строка сверху

mov cx,LEN;LEN - количество выводимых символов

rp: movsb;переслать символ в текущую позицию экрана

inc di;перешагнуть через позицию атрибута

loop rp;повторить до исчерпания (CX)

....;строка 'Всё O.K.' будет выведена в 4-ю строку

;дисплея сверху.

3. REP ;префикс повторения команды. Например окончание предыдущей программы может быть записано в виде:

....

mov cx,LEN;несмотря на то,что массив'Всё O.K.'будет

rep movsb;скопирован в область памяти B800:(A0 * 3), на

;экран дисплея будет выведено: ВёOK. Почему?

4. CMPSB; осуществляет сравнение байта строки источника c адресом (SI) и байта строки приемника с адресом (DI): то есть производит вычитание ((SI)) - ((DI)). Не путать с командой CMP DST, SRC в которой наоборот, производится вычитание источника из приемника. Команда CMPSB неявно уменьшает (CX) на 1 и увеличивает (SI) и (DI) на 1, если (DF) = 0.

5. REPZ или REPE; префикс повторения. Выполнение команды завершается, когда (CX) = 0 или (ZF) = 0.

....

.DATA

src DB 'To be, or not to be'

dst DB 'To be ,or not to be'

len = $ - dst;len равно 19

.CODE

....

cld; (DF) = 0

push ds;совместить адреса

pop es;сегментов ds и es

mov cx,len;длину строки dst переслать в cx

lea di,dst;загрузить адрес(смещение) строки dst в DI

lea si,src

repe cmpsb;сравнивать побайтно

je equal;если все байты совпали, то перейти к метке

not cx;если нет - вычислить номер несовпадающих байт

add cx,len;

jmp notequal;

equal: ....

....

notequal: ....

В конце этого примера номер первого несовпадающего байта (CX) = 5.

 

КОМАНДЫ УПРАВЛЕНИЯ МИКРОПРОЦЕССОРОМ

 

1. CLC; сбросить флаг переноса (CF) = 0.

2. STC; установить флаг переноса (CF) = 1.

3. CMC; инвертировать флаг пнреноса.

4. CLD; очистить флаг направления (DF) = 0, в этом случае операции над строками (цепочками байтов) будут производиться от младшего адреса к старшему.

5. STD; установить флаг направления (DF) = 1,обработка цепочек байтов производится от старшего адреса к младшему.

6. STI; установить флаг прерываний (IF) = 1, разрешить прерывания от внешних устройств.

7.CLI; очистить флаг прерываний.

8. NOP; холостая операция.

 

КОМАНДЫ ПРЕРЫВАНИЙ

 

1. INT INUM; эта команда вызывает программное прерывание, то есть переход к ячейке памяти с адресом хранящимся в четырех байтах, начиная с адреса INUM * 4, где INUM = (0...255). Это 4-х байтовое число является указателем подпрограммы обработчика данного прерывания, и иначе называется вектором прерывания.Таким образом первый килобайт памяти 256 * 4 отводится под векторы прерываний.

Операции инициируемые программными прываниями определяются кодом в регистре AH, например:

....

mov ah,14d;функция вывода символа на дисплей,с последующимм

mov al,31h;продвижением курсора на одну позицию вправо.

int 10h;на экран будет выведена цифра '1'(ASCII код 31h).

....

.DATA

privet DB 'Добрый morning !','$';

.CODE

....

lea dx,privet;специальная функция регистра DX

mov ah,9;9 - функция вывода на экран дисплея

int 21h;будет выведено приветствие ....

ВЛИЯНИЕ КОМАНД НА ФЛАГИ

В таблицу включены только те инструкции, которые влияют на флаги.

"+" - обозначает, что команда влияет на флаг, "-" - не влияет, "1" - флаг устанавливается в 1, "0" - флаг устанавливается в 0 (сбрасывается), "#" - инверсия флага, "?" - не определенное значение флага, >1 - одиночный сдвиг, >n - многоразрядный сдвиг.

 

ПРИМЕЧАНИЯ

1. R1,R2 - одно- или двухбайтные регистры.

2. RP - двухбайтные регистры.

3. SRC,DST -источник,приемник (регистр или ячейка па-

мяти)

4. M,M1,M2 -ячейки памяти с символическими адресами M,

M1 и M2.

5. CNT - счетчик,регистр CL или CX.

6. SUBR,NAME - символический адрес (метка начала

подпрограммы или блока операторов).

7. Во всех командах условных переходов метка NAME

должна отстоять от команды перехода не более,чем на -128

или +127 байтов.

8. INUM - номер прерывания.

 

ОБЩИЙ РАЗДЕЛ

1.1. Технико-математическое описание задачи

Программа делится на две части:

Первая часть программы - Сбор сведений - это часть программы, собирающая справки об оборудовании, установленном на ПК, на котором программа выполняется. Справки наводятся о следующих устройствах:

  • математическом сопроцессоре;

  • СОМ портах;

  • LPT портах;

  • дисководах;

  • CD-ROM приводах;

  • расширенном управлении электропитанием;

  • манипуляторе «мышь».

Математический сопроцессор – это микрочип, устанавливаемый на материнскую плату, который работает совместно с основным процессором, осуществляет обработку чисел с плавающей точкой, тем самым разгружая основной процессор. Может устанавливаться опционально по желанию пользователя либо самим пользователем, т.е. может либо присутствовать, либо отсутствовать.

СОМ порты – это порты с последовательным типом передачи данных, предназначенные для подключения коммуникационных, манипуляторных и других устройств, где требуется сравнительно не- большая скорость передачи данных. Количество установленных последовательных портов может варьироваться от одного до четырёх. На некоторых материнских платах существует ограничение на подключение последовательных портов, например: если это значение будет два, и если вы подключите четыре порта, то работать будут все равно два.

LPT порты – это порты с параллельным типом передачи данных, предназначенные для подключения принтеров и других устройств, где требуется относительно большая скорость передачи данных, а также могут использоваться для соединения двух компьютеров между собой для обмена данными. Количество установленных LPT портов может варьироваться от одного до четырёх.

Дисковод – устройство, предназначенное для чтения/записи накопителей на магнитном диске (гибкий диск). Существует четыре типа дисководов:

  • 360 Кб.;

  • 720 Кб.;

  • 1.2 Мб.;

  • 1.44 Мб.

Они различаются по формату обслуживаемых дискет и максимально возможному объему данных, записываемых на дискету соотвестсвующего типа.

CD-ROM привод – устройство, предназначенное только для чтения накопителей на лазерных дисках. Различаются по скорости доступа к данным и скоростью вращения лазерного диска. Обычно устанавливают не более одного привода.

РУЭ (расширенное управление электропитанием) – стандарт, служащий для экономии электроэнергии. Представляет собой следующий набор функций:

  • автоматическое отключение электропитания;

  • «спящий» режим;

  • автоматическое отключение питания монитора;

  • автоматическое отключение питания жестких дисков.

Может находиться в двух состояниях: включено или выключено.

Вторая часть программы - диагностика памяти - проверяет на работоспособность память ПК, на котором выполняется программа.

1.2. Требования к функциональным характеристикам

При запуске программы на экран должна выводиться аннотация, затем, после нажатия на любую клавишу, должен очищаться экран и появляться меню из трех пунктов:

1 – сбор сведений о системе;

2 – тест памяти;

3 – выход.

Для выбора интересующего пункта необходимо нажать на клавиатуре цифры, соответствующие номерам пунктов.

В случае выбора пункта «Сбор сведений о системе» выполняется последовательный вывод информации о ПК в виде списка устройств с текущим состоянием. Ниже приведена таблица со списком устройств и их возможными состояниями.

Таблица 1

Таблица возможных состояний устройств

Устройство

Возможные состояния

Математический сопроцессор

Присутствует, отсутствует

Максимальное количество подключаемых Сом портов

От 0 до 4

Количество CОМ-портов

От 0 до 4

Количество LPT-портов

От 0 до 4

Первый дисковод

Отсутствует, 360Kb, 720Kb, 1.2Mb, 1.44Mb.

Второй дисковод

Отсутствует, 360Kb, 720Kb, 1.2Mb, 1.44Mb.

Количество установленных CD-ROM приводов

От 0 до 4

Расширенное управление электропитанием(APM)

Отсутствует, присутствует, включено/выключено

Манипулятор «мышь»

Отсутствует, присутствует

После вывода списка устройств, в программе необходимо реализовать задержку, затем возврат в меню.

В случае выбора пункта «тест памяти» программа должна выполнять тестирование не менее 640Кб. памяти. В случае если память исправна, на экран выводиться сообщение «тест пройден», в противном случае «тест не пройден». Также необходимо реализовать задержку и возврат в меню.

В случае выбора пункта «выход», необходимо реализовать завершение работы программы и передачу управления операционной системе DOS.

1.3. Требования техническим и программным средствам

Программа выполнена на языке ассемблера 8086 процессора,

соответственно ей необходим IBM PC – совместимый компьютер с процессором не ниже 8086, также программа может выполняться на компьютерах с процессорами старшего поколения (например: 80286 или 80386), т.к. особенностью архитектуры 80х86 является преемственность на уровне машинных команд: программы, написанные для младших моделей процессоров, без всяких изменений могут быть выполнены на более старших моделях.

Компилированный код программы занимает всего 2 Кб – это связано с отсутствием избыточного кода, которого очень много при использовании языков высокого уровня. В связи с этим программа может легко поместиться на дискету 360 Кб.

Программа работает в текстовом режиме и не использует цветовой гаммы, поэтому ей достаточно монитора CGA. Кроме того она может без всяких изменений работать на мониторах старшего поколения таких, как EGA, VGA и SVGA.

Так как программа тестирует 640 Кб оперативной памяти, этот объем является минимумом.

1.3.1. Обоснования выбора языка программирования

Для написания данной программы был выбран язык ассемблера. В связи с тем, что он наиболее подходит для реализации такого рода задач, т.е. где требуется доступ к портам, выполнение специальных прерываний, доступ к области памяти BIOS и т.д.

Язык ассемблера, представляет собой фактически символьную форму записи машинного языка: в нем вместо цифровых кодов операций вписывают привычные знаки операций или их словесные названия, вместо адресов – имена, а константы записывают в десятичное системе счисления. Программу, записанную в таком виде, вводят в ЭВМ и подают на вход специальному транслятору, называемому ассемблером, который переводит её на машинный язык, и далее полученную машинную программу выполняют.

Для любой ЭВМ можно придумать разные языки ассемблера, хотя бы потому, что можно по-разному обозначать машинные операции. В частности, и для ПК разработано несколько таких языков(ASM-86, MASM, TASM). Для реализации данной задачи был выбран язык, который создан фирмой Borland и полное название которого – турбо ассемблер, сокращенно TASM. Надо отметить, что этот язык наиболее часто используется на ПК.

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5209
Авторов
на СтудИзбе
430
Средний доход
с одного платного файла
Обучение Подробнее