Главная » Все файлы » Просмотр файлов из архивов » Файлы формата DJVU » Олифер В.Г., Олифер Н.А. - Компьютерные сети. Принципы, технологии, протоколы (4-ое изд.) - 2010 - обработка

Олифер В.Г., Олифер Н.А. - Компьютерные сети. Принципы, технологии, протоколы (4-ое изд.) - 2010 - обработка, страница 15

DJVU-файл Олифер В.Г., Олифер Н.А. - Компьютерные сети. Принципы, технологии, протоколы (4-ое изд.) - 2010 - обработка, страница 15 Аппаратные средства ЛВС (347): Книга - 9 семестр (1 семестр магистратуры)Олифер В.Г., Олифер Н.А. - Компьютерные сети. Принципы, технологии, протоколы (4-ое изд.) - 2010 - обработка: Аппаратные средства ЛВС - DJVU, страниц2013-09-22СтудИзба

Описание файла

DJVU-файл из архива "Олифер В.Г., Олифер Н.А. - Компьютерные сети. Принципы, технологии, протоколы (4-ое изд.) - 2010 - обработка", который расположен в категории "". Всё это находится в предмете "аппаратные средства лвс" из 9 семестр (1 семестр магистратуры), которые можно найти в файловом архиве МГТУ им. Н.Э.Баумана. Не смотря на прямую связь этого архива с МГТУ им. Н.Э.Баумана, его также можно найти и в других разделах. Архив можно найти в разделе "книги и методические указания", в предмете "аппаратные средства лвс" в общих файлах.

Просмотр DJVU-файла онлайн

Распознанный текст из DJVU-файла, 15 - страница

Общие принципы построения сетей МАС-адресов не требуется выполнение ручной работы, так как они обычно встраиваются в аппаратуру компанией-изготовителем, поэтому их называют также аппаратными адресами (ЬагсЬтаге а<Ыгезз). Использование плоских адресов является жестким решением — при замене аппаратуры, например сетевого адаптера, изменяется и адрес сетевого интерфейса компьютера. Плоское адресное пространство Множество адресов узлов Рис. 2.12. Плоская организация адресного пространства Иерархическое здреснсе пространство Адрес овтевою интерфейса — и Множество адресов подгрупп интерфейсов — (Ц Множество адресов групп интерфейсов — (К) Иерархический адрес — (К, ~, п) Рис.

2.13. Иерархическая организация адресного пространства При иерархической организации адресное пространство структурируется в виде вложенных друг в друга подгрупп, которые, последовательно сужая адресуемую область, в конце концов, определяют отдельный сетевой интерфейс.

В показанной на рис. 2.13 трехуровневой структуре адресного пространства адрес конечного узла задается тремя составляющими: идентификатором группы (К), в которую входит данный узел, идентификатором подгруппы (1.) и, наконец, идентификатором узла (и), однозначно определяюшим его в подгруппе. Иерархическая адресация во многих случаях оказывается более рациональной, чем плоская. В больших сетях, состоящих из многих тысяч узлов, использование плоских адресов приводит к большим издержкам — конечным узлам и коммуникационному оборудованию приходится оперировать таблицами адресов, состоящими из тысяч записей.

В противоположность этому иерархическая система адресации позволяет при перемещении данных до определенного момента пользоваться Проблемы связи несколькик компьютеров только старшей составляющей адреса (иапример, идентификатором группы К), затем для дальнейшей локализации адресата задействовать следующую по старшинству часть (Е) и в конечном счете — младшую часть (и).

Типичными представителями иерархических числовых адресов являются сетевые 1Р- и 1РХ-адреса. В иих поддерживается двухуровневая иерархия, адрес делится иа старшую часть — номер сети и младшую — номер узла. Такое деление позволяет передавать сообщения между сетями только иа основании номера сети, а номер узла требуется уже после доставки сообщения в нужную сеть; точно так же, как название улицы используется почтальоиом только после того, как письмо доставлено в нужный город. На практике обычно применяют сразу несколько схем адресации, так что сетевой интерфейс компьютера может одновременно иметь несколько адресов-имен.

Каждый адрес задействуется в той ситуации, когда соответствующий вид адресации наиболее удобен. А для преобразования адресов из одного вида в другой используются специальные вспомогательные протоколы, которые называют протоколами разрешеиия адресов. Пользователи адресуют компьютеры иерархическими символьными именами, которые автоматически заменяются в сообщениях, передаваемых по сети, иерархическими числовыми адресами. С помощью этих числовых адресов сообщения доставляются из одной сети в другую, а после доставки сообщения в сеть назначения вместо иерархического числового адреса используется плоский аппаратный адрес компьютера.

Проблема установления соответствия между адресами различных типов может решаться как централизованными, так и распределенными средствами. При централизованном подходе в сети выделяется один или несколько компьютеров (серверов имен), в которых хранится таблица соответствия имен различных типов, например символьных имен и числовых адресов. Все остальные компьютеры обращаются к серверу имен с запросами, чтобы по символьному имени найти числовой номер необходимого компьютера. При распределенном подходе каждый компьютер сам хранит все назначенные ему адреса разного типа. Тогда компьютер, которому необходимо определить по известному иерархическому числовому адресу некоторого компьютера его плоский аппаратный адрес, посылает в сеть широковещательный запрос. Все компьютеры сети сравнивают содержащийся в запросе адрес с собственным.

Тот компьютер, у которого обнаружилось совпадение, посылает ответ, содержащий искомый аппаратный адрес. Такая схема использована в протоколе разрешения адресов (АгЫгезз Веко!Шюп Ргогосо1, АКР) стека ТСР/1Р. Достоинство распределенного подхода состоит в том, что ои позволяет отказаться от выделения специального компьютера в качестве сервера имен, который, к тому же, часто требует ручного задания таблицы соответствия адресов. Недостатком его является необходимость широковещательных сообщений, перегружаюших сеть. Именно поэтому распределенный подход используется в небольших сетях, а централизованный — в больших.

До сих пор мы говорили об адресах сетевых интерфейсов, компьютеров и коммуникационных устройств, однако конечной целью данных, пересылаемых по сети, являются ие сетевые интерфейса! или компьютеры, а выполняемые иа этих устройствах программы— процессы. Поэтому в адресе назначения наряду с информацией, идентифицирующей интерфейс устройства, должен указываться адрес процесса, которому предназначены посылаемые по сети данные. Очевидно, что достаточно обеспечить уникальность адреса процесса в пределах компьютера.

Примером адресов процессов являются номера яортов ТСРи (/ВР, используемые в стеке ТСР/1Р. Глава 2. Общие принципы построения сетей Коммутация Итак, пусть компьютеры физически связаны между собой в соответствии с некоторой топологией и выбрана система адресации. Остается нерешенной самая важная проблема: каким способом передавать данные между конечными узлами? Особую сложность приобретает зта задача для неполносвязной топологии сети, когда обмен данными между произвольной парой конечных узлов (пользователей) должен идти в общем случае через транзитные узлы.

Например, в сети, показанной на рис. 2А4, узлы 2 и 4, непосредственно между собой не связанные, вынуждены передавать данные через транзитные узлы, в качестве которых могут выступить, например, узлы 1 и 5. Узел 1должен выполнить передачу данных между своими интерфейсами А и В, а узел 5 — между интерфейсами г" и В. В данном случае маршрутом является последовательность: 2- 1-5-4, где 2 — узел-отправитель, 1 и 5 — транзитные узлы, 4 — узел-получатель. Рис. 2.14.

Коммутация абонентов через сеть транзитных узлов Обобщенная задача коммутации В самом общем виде задача коммутации может быть представлена в виде следующих взаимосвязанных частных задач. 1. Определение информационных потоков, для которых требуется прокладывать марш- руты.

вэ Обобщенная задача коммутации 2. Маршрутизация потоков. 3. Продвижение потоков, то есть распознавание потоков и их локальная коммутация на каждом транзитном узле. 4. Мультиплексирование и демультиплексирование потоков. Определение информационных потоков Понятно, что через один транзитный узел может проходить несколько маршрутов, например, через узел 5 (см. рис.

2.14) проходят, как минимум, все данные, направляемые узлом 4 каждому из остальных узлов, а также все данные, поступающие в узлы 3, 4 и 10. Транзитный узел должен уметь распознавать поступающие на него потоки данных, для того чтобы обеспечивать передачу каждого из них именно на тот свой интерфейс, который ведет к нужному узлу. ИнфсдзэдцмавмйпцЙима,'няи потсксмдяшнэх, наэыааотнвнрврйвн1зР псследпвцэняьивсгь,: дзнньаьобэлщЫнеийьвгйяйсрсм пйизвг признаков, яыдвлшоцвв«зэидянныя мксйцгв1б«ф1ввсго'; трайвнэВ.' Например, как поток можно определить все данные, поступающие от одного компьютера; объединяющим признаком в данном случае служит адрес источника. Эти же данные иожно представить как совокупность нескольких подпотоков, каждый из которых в качестве дифференцирующего признака имеет адрес назначения.

Наконец, каждый из этих подпотоков, в свою очередь, можно разделить на более мелкие подпотоки, порожденные рззными сетевыми приложениями — электронной почтой, программой копирования файлов, зеб-сервером. Данные, образующие поток, могут быть представлены в виде различных информационных единиц данных — пакетов, кадров или ячеек. ПРИМЕЧАНИЕ В англоязычной литературе для потоков данных, передающихся с равномерной н неравномерной скорасгью, обычно используют разине термины — оютэетсгвенно «даш эггеаш«н «дага йож».

Например, при передаче эеб-страницы через Интернет предложенная нагрузка представляет собой неравномерный поток данных, а прн вещании музыки интернет-станцией — равномерный. Для сетей передачи хэииых характерна неравномерная скорость передачи, поэтому далее в большинстве ситуаций под германом «поток данных«мы будем понимать именно неравномерный поток даннмх и указывать на равномерный характер этого процесса только тогда, когда это нужно подчеркнуть. Очевидно, что при коммутации в качестве обязательного признака выступает адрес назначения данных. На основании этого признака весь поток входящих в транзитный узел данных разделяется на подпотоки, каждый из которых передается на интерфейс, соответствующий маршруту продвижения данных.

Адреса источника и назиачения определяют поток для пары соответствующих конечных узлов. Однако часто бывает полезно представить этот поток в виде нескольких подпотоков, причем для каждого из них может быть проложен свой особый маршрут. Рассмотрим припер, когда на одной и той же паре конечных узлов выполняется несколько взаимодействующих по сети приложений, каждое из которых предъявляет к сети свои особые требования. В таком случае выбор маршрута должен осуществляться с учетом характера передаваемых 64 Глава 2.

Общие принципы построения сетей данных, например, для файлового сервера важно, чтобы передаваемые им большие объемы данных направлялись по каналам, обладающим высокой пропускной способностью, а для программной системы управления, которая посылает в сеть короткие сообщения, требующие обязательной и немедленной отработки, при выборе маршрута более важна надежность линии связи и минимальный уровень задержек на маршруте.

Кроме того, даже для данных, предъявляющих к сети одинаковые требования, может прокладываться несколько маршрутов, чтобы за счет распараллеливания ускорить передачу данных. Признаки потока могут иметь глобальное или локальное значение — в первом случае они однозначно определяют поток в пределах всей сети, а во втором — в пределах одного транзитного узла. Пара адресов конечных узлов для идентификации потока — зто пример глобального признака. Примером признака, локально определяющего поток в пределах устройства, может служить номер (идентификатор) интерфейса данного устройства, на который поступили данные. Например, возвращаясь к рис.

2А4, узел 1 может быть настроен так, чтобы передавать на интерфейс В все данные, поступившие с интерфейса А, а на интерфейс С вЂ” данные, поступившие с интерфейса Р. Такое правило позволяет отделить поток данных узла 2 от потока данных узла 7 и направлять их для транзитной передачи через разные узлы сети, в данном случае поток узла 2 — через узел 5, а поток узла 7 — через узел 8. Метка потока — зто особый тип признака.

Она представляет собой некоторое число, которое несут все данные потока. Глобальная метка назначается данным потока и не меняет своего значения на всем протяжении его пути следования от узла источника до узла назначения, таким образом, она уникально определяет поток в пределах сети. В некоторых технологиях используются локальные метки потока, динамически меняющие свое значение при передаче данных от одного узла к другому. Таким образом, распознавание потоков во время коммутации происходит на основании признаков, в качестве которьм, помимо обязательного адреса назначения данных, могут выступать и друтив признаки, такие, например, как идентификаторы приложений.

Маршрутизация Задача маршрутизации, в свою очередь, включает в себя две подзадачи: 0 определение маршрута; Ю оповещение сети о выбранном маршруте. Онределитиь маршрут означает выбрать последовательность транзитных узлов и их интерфейсов, через которые надо передавать данные, чтобы доставить их адресату. Определение маршрута — сложная задача, особенно когда конфигурация сети такова, что между парой взаимодействующих сетевых интерфейсов существует множество путей.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5259
Авторов
на СтудИзбе
421
Средний доход
с одного платного файла
Обучение Подробнее