Вопросы/задания к заданиям: Оценивание параметров и проверка гипотезы онормальном законе распределения
Описание
Вариант 3
Лист основных итогов типового расчёта
Фамилия И.О., группа | Вариант | 3 | |||||||||
| | |||||||||||
xmin | xmax | R | hСтерджеса | hСкотта | hКв.корня | hДиакониса- Фридмана | q0,25 | q0,75 | |||
| | 80 | 99 | 19 | 2,4856 | 3,4832 | 1,9 | 2,9408 | 88 | 93,25 | ||
Границы интервалов | |||||||||||
| a1 | b1=a2 | b2=a3 | b3=a4 | b4=a5 | b5=a6 | b6=a7 | b7=a8 | b8=a9 | b9 | ||
78,7572 | 81,2428 | 83,7284 | 86,2140 | 88,6996 | 91,1852 | 93,6709 | 96,1565 | 98,6421 | 101,1277 | ||
Середины интервалов | |||||||||||
x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | x9 | |||
80 | 82,49 | 84,97 | 87,46 | 89,94 | 92,43 | 94,91 | 97,40 | 99,88 | |||
Эмпирические частоты | |||||||||||
Ряд | m1 | m2 | m3 | m4 | m5 | m6 | m7 | m8 | m9 | m10 | m11 |
Стерджеса | 3 | 6 | 15 | 11 | 21 | 19 | 16 | 6 | 3 | ||
Скотта | 3 | 13 | 19 | 31 | 18 | 16 | |||||
Кв.корня | 1 | 8 | 7 | 8 | 11 | 21 | 10 | 18 | 7 | 6 | 3 |
Диак.-Фридм | 3 | 13 | 8 | 32 | 19 | 16 | 9 | ||||
Накопленные частоты (ряд по Стерджесу) | |||||||||||
| | m1Н | m2Н | m3Н | m4Н | m5Н | m6Н | m7Н | m8Н | m9Н | ||
3 | 9 | 24 | 35 | 56 | 75 | 91 | 97 | 100 | |||
Выборочные характеристики (ряд по Стерджесу) | |||||||||||
Xmean | * 2 μ2 =S | S | * μ3 | Aс* | * μ4 | Eк* | Vs* | Мо* | Ме* | ||
По исх. данным | 90,11 | 21,3379 | 4,6193 | -17,0128 | -0,1726 | 1059,5264 | -0,6729 | 5,1263% | 88;89 | 90 | |
По инт. ряду | 90,191 | 22,0564 | 4,6964 | -14,0053 | -0,1352 | 1163,8479 | -0,6076 | 5,2072% | 90,7710 | 90,4751 | |
Расчёт теоретической кривой нормального распределения (теоретические частоты) | |||||||||||
| T m1 | T m2 | T m3 | T m4 | T m5 | T m6 | T m7 | T m8 | m9T | |||
неокругленн ые | 2,745 | 5,635 | 11,665 | 17,785 | 21,265 | 18,84 | 12,555 | 6,295 | 3,215 | ||
округленные (для обеспечения n) | 3 | 6 | 12 | 18 | 21 | 19 | 12 | 6 | 3 | ||
Критерий хи-квадрат | |||||||||||
| χ2 набл. | χ2 крит. | α | число степеней свободы 𝝂 | ||||||||
4,8056 | 9,488 | 0,05 | 4 | ||||||||
ВЫВОД: | Гипотеза о нормальном законе | НЕ ОТВЕРГАЕТСЯ на уровне значимости α=0,05 | |||||||||
vitalievnatalia
















