Задача 3: Колебания вариант 4
Описание
Зачтено на максимальный балл
Вариант 4 - ДЗ №3 - Колебания
Для механических систем (МС), расположенных на горизонтальной плоскости и представленных на рис. 22 – 25, определить круговую частоту и период собственных незатухающих колебаний. Значения масс шариков, жёсткость соединяющих их пружин, а также другие исходные данные приведены в табл. 8. Трением шариков при их движении о контактную горизонтальную плоскость пренебречь.
Вар | Рис | m | k | l0 | l | r | V1 | V2 |
2 | 24,25 | 0,7m* | 1,3k* | 1,1l* | 1,4l* | 1,9r* | 0 | 0,6u* |
Для конкретной колебательной системы (КС), представленной на соответствующем рисунке, необходимо:
1. Вывести дифференциальное уравнение малых свободных затухающих колебаний, если сила сопротивления движению тела КС пропорциональна скорости, т.е., где r - коэффициент сопротивления.
2. Определить круговую частоту и период T0 свободных незатухающих колебаний.
3. Найти круговую частоту и период T свободных затухающих колебаний.
4. Вычислить логарифмический декремент затухания.
5. Определить, используя начальные условия задачи и исходные данные, начальные амплитуду A0 и фазу колебаний.
6. Написать с учетом найденных значений уравнение колебаний.
Другие исходные данные и начальные условия задачи для каждого варианта задания приведены в табл. 8 – 15.




Файлы условия, демо
Характеристики решённой задачи
Список файлов
