Для студентов МГТУ им. Н.Э.Баумана по предмету ФизикаДинамика материальной точки + Динамика вращательного движенияДинамика материальной точки + Динамика вращательного движения
5,00513
2018-02-192024-09-01СтудИзба
ДЗ 1: Динамика материальной точки + Динамика вращательного движения вариант 16
-50%
Описание
Задача 1
Гладкая частица сферической формы массой m, которую можно рассматривать как материальную точку, ударяется со скоростью V0 о гладкую массивную преграду, которая движется со скоростью U const . Угол, образованный векторами V0 и U , равен . Массу преграды считать бесконечной. На рис. 5, 6 преграда имеет форму плоской стенки, на рис.7 – форму острого конуса с углом раствора γ, а на рис. 8 – форму конуса сферической головной частью радиусом R. Удар частицы о сферическую поверхность происходит в точке А, расположенной под углом γ относительно оси преграды. При этом АО = R. Виды взаимодействия: а) абсолютно упругий удар (АУУ); б) неупругий удар (НУУ); в) абсолютно неупругий удар (АНУУ). Обозначения: VK - конечная скорость частицы после удара; K - угол, образованный векторами VK и U ; V - изменение вектора скорости частицы за время удара; p - изменение модуля импульса частицы за время удара; E - изменение кинетической энергии частицы за время удара;
Задача 2
Однородный жёсткий стержень длиной l=0,5 м и массой М=0,5 кг может свободно без трения вращаться вокруг горизонтальной оси О. При прохождении стержнем вертикального положения с угловой скоростью 0 , он своим нижним концом ударяет по маленькому кубику массой m=0,1 кг, который после удара движется в плоскости рисунка (рис. 15). При этом взаимодействие стержня с кубиком может происходить в виде: абсолютно упругого удара (АУУ); неупругого удара (НУУ); абсолютно неупругого удара (АНУУ). Другие обозначения: 0 – угловая скорость стержня сразу после взаимодействия с кубиком; 0m – минимальная угловая скорость 0, при которой стержень после удара совершит полный оборот вокруг оси O при заданном типе взаимодействия;
Гладкая частица сферической формы массой m, которую можно рассматривать как материальную точку, ударяется со скоростью V0 о гладкую массивную преграду, которая движется со скоростью U const . Угол, образованный векторами V0 и U , равен . Массу преграды считать бесконечной. На рис. 5, 6 преграда имеет форму плоской стенки, на рис.7 – форму острого конуса с углом раствора γ, а на рис. 8 – форму конуса сферической головной частью радиусом R. Удар частицы о сферическую поверхность происходит в точке А, расположенной под углом γ относительно оси преграды. При этом АО = R. Виды взаимодействия: а) абсолютно упругий удар (АУУ); б) неупругий удар (НУУ); в) абсолютно неупругий удар (АНУУ). Обозначения: VK - конечная скорость частицы после удара; K - угол, образованный векторами VK и U ; V - изменение вектора скорости частицы за время удара; p - изменение модуля импульса частицы за время удара; E - изменение кинетической энергии частицы за время удара;



Задача 2
Однородный жёсткий стержень длиной l=0,5 м и массой М=0,5 кг может свободно без трения вращаться вокруг горизонтальной оси О. При прохождении стержнем вертикального положения с угловой скоростью 0 , он своим нижним концом ударяет по маленькому кубику массой m=0,1 кг, который после удара движется в плоскости рисунка (рис. 15). При этом взаимодействие стержня с кубиком может происходить в виде: абсолютно упругого удара (АУУ); неупругого удара (НУУ); абсолютно неупругого удара (АНУУ). Другие обозначения: 0 – угловая скорость стержня сразу после взаимодействия с кубиком; 0m – минимальная угловая скорость 0, при которой стержень после удара совершит полный оборот вокруг оси O при заданном типе взаимодействия;


Характеристики домашнего задания
Предмет
Учебное заведение
Семестр
Номер задания
Вариант
Просмотров
1424
Качество
Фото рукописных листов
Размер
3,97 Mb
Список файлов
Динамика материальной точки.pdf
Динамика вращательного движения.pdf

Вам все понравилось? Получите кэшбэк - 40 рублей на Ваш счёт при покупке. Поставьте оценку и напишите положительный комментарий к купленному файлу. После Вы получите деньги на ваш счет.