Безопасность жизнедеятельнос_под ред. Белова С.В_Учебник_2007 -618с (966432), страница 92
Текст из файла (страница 92)
В плане указывают объем и стоимость планируемых работ, источники финансирования, основные материалы и их количество, машины и механизмы, рабочую силу, ответственных исполнителей, сроки выполнения и т. д. Исследование устойчивости функционирования объекта начинается задолго до ввода его в эксплуатацию. На стадии проектирования это в той или иной степени делает проектант.
Такое же исследование объекта проводится соответствующими службами на стадии технических, экономических, экологических и иных видов экспертиз. Каждая реконструкция или расширение объекта также требует нового исследования устойчивости. Таким образом, исследование устойчивости — это не одноразовое действие, а длительный, динамичный процесс, требующий постоянного внимания со стороны руководства, технического персонала, служб гражданской обороны. Любой промышленный объект включает наземные здания и сооружения основного и вспомогательного производства, складские помещения и здания административно-бытового назначения.
В зда- 463 ниях и сооружениях основного и вспомогательного производства размещается типовое технологическое оборудование, сети газо-, тепло-, электроснабжения. Между собой здания и сооружения соединены сетью внутреннего транспорта, сетью энергоносителей и системами связи и управления. На территории промышленного объекта могут быть расположены сооружения автономных систем электро- и водоснабжения, а также отдельно стоящие технологические установки и т. д. Здания и сооружения возводятся по типовым проектам из унифицированных материалов. Проекты производств выполняются по единым нормам технологического проектирования, что приводит к среднему уровню плотности застройки (обычно 30 — 60 %).
Все это дает основание считать, что для всех промышленных объектов, независимо от профиля производства и назначения, характерны общие факторы, влияющие на устойчивость объекта и подготовку его к работе в условиях ЧС. На работоспособность промышленного объекта оказывают негативное влияние специфические условия и прежде всего район его расположения. Он определяет уровень и вероятность воздействия опасных факторов природного происхождения (сейсмическое воздействие, сели, оползни, тайфуны, цунами, число гроз, ливневых дождей и т. д.). Поэтому большое внимание уделяется исследованию и анализу района расположения объекта. При этом выясняются метеорологические условия района (количество осадков, направление господствующих ветров, максимальная и минимальная температура самого жаркого и самого холодного месяца); изучаются рельеф местности, характер грунта, глубина залегания подпочвенных вод, их химический состав.
На устойчивость объекта влияют: характер застройки территории (структура, тип, плотность застройки), окружающие объект смежные производства, транспортные магистрали, естественные условия прилегающей местности (лесные массивы — источники пожаров, водные объекты — возможные транспортные коммуникации, огнепреградительные зоны и в то же время источники наводнений и т. и.). Район расположения может оказаться решающим фактором в обеспечении защиты и работоспособности объекта в случае выхода из строя штатных путей подачи исходного сырья или энергоносителей. Например, наличие реки вблизи объекта позволит при разрушении железнодорожных или трубопроводных магистралей осуществить подачу материалов, сырья и комплектующих водным транспортом.
При изучении устойчивости объекта дают характеристику зданиям основного и вспомогательного производства, а также зданиям, которые не будут участвовать в производстве основной продукции в случае ЧС. Устанавливают основные особенности их конструкции, указывают технические данные, этажность, длину и высоту, вид каркаса, стеновые заполнения, световые проемы, кровлю, перекрытия, степень износа, огнестойкость здания, число рабочих и служащих, одновременно находящихся в здании (наибольшая рабочая смена), наличие встроенных в здание и вблизи расположенных убежищ, наличие в здании средств эвакуации и их пропускная способность.
При оценке внутренней планировки территории объекта определяется влияние плотности и типа застройки на возможность возникновения и распространения пожаров, образования завалов входов в убежища и проходов между зданиями. Особое внимание обращается на участки, где могут возникнуть вторичные факторы поражения. Такими источниками являются: емкости с ЛВЖ и АХОВ, склады ВВ и взрывоопасные технологические установки; технологические коммуникации, разрушение которых может вызвать пожары, взрывы и загазованность, склады легковоспламеняющихся материалов, аммиачные установки и др. При этом прогнозируются последствия следующих процессов: — утечки тяжелых и легких газов или токсичных дымов; — рассеивания продуктов сгорания во внутренних помещениях; — пожары цистерн, колодцев, фонтанов; — нагрева и испарения жидкостей в бассейнах и емкостях; — воздействия на человека продуктов горения и иных химических веществ; — радиационного теплообмена при пожарах; — взрывов паров ЛВЖ; — образования ударной волны в результате взрывов паров ЛВЖ, сосудов, находящихся под давлением, взрывов в закрытых и открытых помещениях; — распространения пламени в зданиях и сооружениях объекта и т.
п. Технологический процесс изучается с учетом специфики производства на время ЧС (изменение технологии, частичное прекращение производства, переключение на производство новой продукции и т. п.). Оцениваются минимум и возможность замены энергоносителей; возможность автономной работы отдельных станков, установок и цехов объекта, запасы и места расположения АХОВ, ЛВЖ и горючих веществ; способы безаварийной остановки производства в условиях ЧС. Особое внимание уделяется изучению систем газоснабжения, поскольку разрушение этих систем может привести к появлению вторичных поражающих факторов.
465 При исследовании систем управления производством на объекте изучают расстановку сил и состояние пунктов управления и надежности узлов связи; определяют источники пополнения рабочей силы, анализируют возможности взаимозаменяемости руководящего состава объекта. В частной постановке устойчивость объекта в ЧС может быть оценена относительно действия какого-либо одного поражающего фактора, например, относительно температурного воздействия на здания, сооружения и оборудование объекта.
Пожарная защита. Температурное воздействие является статистически преобладающим поражающим фактором, проявляющимся при различных ЧС техногенного происхождения в качестве первичного, а в ряде случаев и вторичного фактора. Оно возникает при воздействии потоков нагретого воздуха, открытого пламени, температурном воздействии при взрывах или воздействии лучистой энергии и приводит к возникновению и распространению пожаров. Устойчивость функционирования промышленного объекта при возникновении пожара зависит от огнестойкости элементов оборудования и зданий, от их конструктивной и функциональной пожарной опасности, от наличия на объекте средств локализации и тушения пожаров и возможностей их своевременного применения.
Под огнестойкосглью понимают способность строительной конструкции сопротивляться воздействию высокой температуры в условиях пожара и выполнять при этом свои обычные эксплуатационные функции. Потеря несущей способности определяется обрушением конструкции или возникновением предельных деформаций и обозначается индексом К. Потеря ограждающих функций определяется потерей целостности или теплоизолирующей способности. Потеря целостности обусловлена проникновением продуктов сгорания за изолирующую преграду и обозначается индексом Е.
Потеря теплоизолирующей способности определяется повышением температуры на необогреваемой поверхности конструкции в среднем более чем на 140'С или в любой точке этой поверхности более чем на 180'С и обозначается индексом 3. Основные положения методов испытаний конструкций на огне- стойкость изложены в ГОСТ 30247.0 — 94 «Конструкции строительные. Методы испытаний на огнестойкость. Общие требования» и ГОСТ 30247,1 — 94 «Конструкции строительные.
Методы испытаний на огнестойкость. Несущие и ограждающие конструкции». Степень огнестойкости здания определяется огнестойкостью его конструкций в соответствии с табл. 12.3 (СНиП 21-1 — 97)«. Т а б л и ц а 12.3. Огнестойкость строительных конструкций Максимальные и еделы огнестойкости ст ительных конс кннй Степень огнестойкости зда- ния несушне элементы здания наружные стены перекрытия межлуэтажные, чердачные и над подва- лом покрытия бесчердач- ные лестничные клетки марши ле- стннн внутренние пчошалки стены К!20 К45 К15 ! И 1И 1Ч КЕЗО КЕ15 КЕ15 КЕ160 КЕЗО КЕЗ45 КЕ15 КЕ1! 5 КЕ!5 Не но мируется КЕ1120 КЕХ90 КЕ145 К60 К45 КЗО Сни П 21-01 — 97* регламентирует классификацию зданий по степени огнестойкости, конструктивной и функциональной пожарной опасности.
Класс конструктивной пожарной опасности здания определяется степенью участия строительных конструкций в развитии пожара и образования его опасных факторов. По пожарной опасности строительные конструкции подразделяются на классы: КО, К1, К2, КЗ (ГОСТ 30403 — 95 «Конструкции строительные. Метод определения пожарной опасности»). Класс пожарной опасности конструкции определяется по табл. 12.4 (по наименее благоприятному фактору).
Т а б л и ц а 12.4. Классы пожарной опасности конструкции Класс пожарной опасности кон- струкдии Допустимый размер повреждения конструкции, см Наличие Допускаемые характеристики пожарной опасности поврежденного материвла Г уппа вертикаль- ные горизон- тальные теплового эффекта горения дымообразующей способ- ности горю- чести воспла- меняе- мости КО К! 0 До 40 » Более 40, но до 80 0 До 25 Более 25, но до 50 Н.Д.
Н.Д Н.Р. Н.Д. Н.Д. Н.Д. Н.Р. Н.Д. Н.Р. В2 Н.Р, Н.Р. Г2 Н.Р. Н Р. Д2 Н.Р. КЗ Н.Р. Н.Д. Н.Р. ГЗ ВЗ Д2 П р и м е ч а н и е. Н.Д.— не допускается; Н.Р.— не регламентируется; обозначения группы горючести поврежденного материала приняты по ГОСТ 30244, воспламеняемости по ГОСТ 30402.