KUR_RAB (954044), страница 13
Текст из файла (страница 13)
Контроллер HSC-70, используемый в VAX-кластерах компании DEC, выполнен по методу зеркальных дисков, называемому методом двойников. Содержимое отдельного диска распределяется между членами его группы двойников. Если группа состоит из двух двойников, мы получаем вариант зеркальных дисков. Заданный сектор может быть прочитан с любого из устройств группы двойников. После того как некоторый сектор записан, необходимо обновить информацию на всех дисках-двойниках. Контроллер имеет возможность предсказывать ожидаемые отказы некоторого диска и выделять горячий резерв для создания копии и сохранения ее на время работы механизма создания группы двойников. Затем отказавший диск может быть выключен.
Дублирование всех дисков может означать удвоение стоимости всей системы или, иначе, использование лишь 50% емкости диска для хранения данных. Повышение емкости, на которое приходится идти, составляет 100%. Такая низкая экономичность привела к появлению следующего уровня RAID.
RAID 2: матрица с поразрядным расслоением
Один из путей достижения надежности при снижении потерь емкости памяти может быть подсказан организацией основной памяти, в которой для исправления одиночных и обнаружения двойных ошибок используются избыточные контрольные разряды. Такое решение можно повторить путем поразрядного расслоения данных и записи их на диски группы, дополненной достаточным количеством контрольных дисков для обнаружения и исправления одиночных ошибок. Один диск контроля четности позволяет обнаружить одиночную ошибку, но для ее исправления требуется больше дисков.
Такая организация обеспечивает лишь один поток ввода/вывода для каждой группы независимо от ее размера. Группы большого размера приводят к снижению избыточной емкости, идущей на обеспечение отказоустойчивости, тогда как при организации меньшего числа групп наблюдается снижение операций ввода/вывода, которые могут выполняться матрицей параллельно.
При записи больших массивов данных системы уровня 2 имеют такую же производительность, что и системы уровня 1, хотя в них используется меньше контрольных дисков и, таким образом, по этому показателю они превосходят системы уровня 1. При передаче небольших порций данных производительность теряется, так как требуется записать либо считать группу целиком, независимо от конкретных потребностей. Таким образом, RAID уровня 2 предпочтительны для суперкомпьютеров, но не подходят для обработки транзакций. Компания Thinking Machine использовала RAID уровня 2 в ЭВМ Connection Machine при 32 дисках данных и 10 контрольных дисках, включая 3 диска горячего резерва.
RAID 3: аппаратное обнаружение ошибок и четность
Большинство контрольных дисков, используемых в RAID уровня 2, нужны для определения положения неисправного разряда. Эти диски становятся полностью избыточными, так как большинство контроллеров в состоянии определить, когда диск отказал при помощи специальных сигналов, поддерживаемых дисковым интерфейсом, либо при помощи дополнительного кодирования информации, записанной на диск и используемой для исправления случайных сбоев. По существу, если контроллер может определить положение ошибочного разряда, то для восстановления данных требуется лишь один бит четности. Уменьшение числа контрольных дисков до одного на группу снижает избыточность емкости до вполне разумных размеров. Часто количество дисков в группе равно 5 (4 диска данных плюс 1 контрольный). Подобные устройства выпускаются, например, фирмами Maxtor и Micropolis. Каждое из таких устройств воспринимается машиной как отдельный логический диск с учетверенной пропускной способностью, учетверенной емкостью и значительно более высокой надежностью.
RAID 4: внутригрупповой параллелизм
RAID уровня 4 повышает производительность передачи небольших объемов данных за счет параллелизма, давая возможность выполнять более одного обращения по вводу/выводу к группе в единицу времени. Логические блоки передачи в данном случае не распределяются между отдельными дисками, вместо этого каждый индивидуальный блок попадает на отдельный диск.
Достоинство поразрядного расслоения состоит в простоте вычисления кода Хэмминга, что необходимо для обнаружения и исправления ошибок в системах уровня 2. В RAID уровня 3 обнаружение ошибок диска с точностью до сектора осуществляется дисковым контроллером. Следовательно, если записывать отдельный блок передачи в отдельный сектор, то можно обнаружить ошибки отдельного считывания без доступа к дополнительным дискам. Главное отличие между системами уровня 3 и 4 состоит в том, что в последних расслоение выполняется на уровне сектора, а не на уровне битов или байтов.
В системах уровня 4 обновление контрольной информации реализовано достаточно просто. Для вычисления нового значения четности требуются лишь старый блок данных, старый блок четности и новый блок данных:
новая четность = (старые данные xor новые данные) xor старая четность
В системах уровня 4 для записи небольших массивов данных используются два диска, которые выполняют четыре выборки (чтение данных плюс четности, запись данных плюс четности). Производительность групповых операций записи и считывания остается прежней, но при небольших (на один диск) записях и считываниях производительность существенно улучшается. К сожалению, улучшение производительности оказывается недостаточной для того, чтобы этот метод мог занять место системы уровня 1.
RAID 5: четность вращения для распараллеливания записей
RAID уровня 4 позволяли добиться параллелизма при считывании отдельных дисков, но запись по-прежнему ограничена возможностью выполнения одной операции на группу, так как при каждой операции должны выполняться запись и чтение контрольного диска. Система уровня 5 улучшает возможности системы уровня 4 посредством распределения контрольной информации между всеми дисками группы.
Это небольшое изменение оказывает огромное влияние на производительность записи небольших массивов информации. Если операции записи могут быть спланированы так, чтобы обращаться за данными и соответствующими им блоками четности к разным дискам, появляется возможность параллельного выполнения N/2 записей, где N - число дисков в группе. Данная организация имеет одинаково высокую производительность при записи и при считывании как небольших, так и больших объемов информации, что делает ее наиболее привлекательной в случаях смешанных применений.
RAID 6: Двумерная четность для обеспечения большей надежности
Этот пункт можно рассмотреть в контексте соотношения отказоустойчивость/пропускная способность. RAID 5 предлагают, по существу, лишь одно измерение дисковой матрицы, вторым измерением которой являются секторы. Теперь рассмотрим объединение дисков в двумерный массив таким образом, чтобы секторы являлись третьим измерением. Мы можем иметь контроль четности по строкам, как в системах уровня 5, а также по столбцам, которые, в свою очередь. могут расслаиваться для обеспечения возможности параллельной записи. При такой организации можно преодолеть любые отказы двух дисков и многие отказы трех дисков. Однако при выполнении логической записи реально происходит шесть обращений к диску: за старыми данными, за четностью по строкам и по столбцам, а также для записи новых данных и новых значений четности. Для некоторых применений с очень высокими требованиями к отказоустойчивости такая избыточность может оказаться приемлемой, однако для традиционных суперкомпьютеров и для обработки транзакций данный метод не подойдет.
В общем случае, если доминируют короткие записи и считывания и стоимость емкости памяти не является определяющей, наилучшую производительность демонстрируют системы RAID уровня 1. Однако если стоимость емкости памяти существенна, либо если можно снизить вероятность появления коротких записей (например, при высоком коэффициенте отношения числа считываний к числу записей, при эффективной буферизации последовательностей считывания-модификации-записи, либо при приведении коротких записей к длинным с использованием стратегии кэширования файлов), RAID уровня 5 могут обеспечить очень высокую производительность, особенно в терминах отношения стоимость/производительность.
Приложение 2. Расчет затрат на создание системы распределенной обработки данных в сети.
2.1. Смета затрат на создание проектного решения интерсети.
№ | Статья сметы затрат | Сумма (руб.) |
1 | Материалы | 688 |
2 | Оборудование | 3602,5 |
3 | Услуги сторонних организаций | 6 |
4 | Заработная плата | 1931,44 |
5 | Отчисления на социальные нужды | 743,60 |
6 | Накладные расходы | 697,15 |
7 | Себестоимость | 7668,69 |
8 | Прибыль | 2070,55 |
9 | Цена | 9739,24 |
10 | Продажная цена | 11687,09 |
2.2. Расчет и обоснование сметы затрат на создание проектного решения интерсети.
2.2.1. Материалы.
К статье затрат на материалы отнесены следующие расходы:
Наименование | Количество | Цена (руб.) |
Бумага формата А4 (высокого качества: плотность 80 г/м2). | 1 пачка (500 листов) | 120 |
Картридж для принтера OKI Page 4w | 1 шт. | 528 |
Дискеты MF 2HD (Verbatim). | 4 шт. | 40 |
Итого 688 рублей.
2.2.2. Оборудование.
Затраты по данной статье сводятся к затратам, связанным с использованием вычислительной техники и с учетом ее ремонта.
При разработке использовалось следующее оборудование:
Наименование | Цена (руб.) |
Компьютер конфигурации: Pentium II- 333 МГц, 16 МБ ОЗУ, 5.4 ГБ НЖМД, 1 МБ видео ЗУ, 4хCD, монитор SVGA 800x600 14». | 20200 |
Принтер OkiPage 4w. | 6000 |
Итого: 26200 рублей.
Затраты на вычислительную технику были определены из того, что при разработке была задействована одна ПЭВМ. Длительность использования оборудования составляет 3 месяца.
При использовании ускоренных сроков амортизации затраты на вычислительную технику вычисляются по формуле:
З - сумма амортизации за период,
К - коэффициент амортизации (на год), К=0,15 для ускоренной амортизации,
Si - стоимость компонентов оборудования,
Tи - период использования оборудования (в месяцах).
З=0.15*[Стоимость компьютера + стоимость принтера]*3/12 = 982,5 руб.
С учетом затрат на ремонт (10% от стоимости оборудования)
затраты на оборудование с учетом его ремонта составляют: