2-658-1400428707-3 (782630), страница 2
Текст из файла (страница 2)
Расстановка контрольных точек предполагает, что программист связывает с ней точный адрес памяти. Для некоторых отладчиков программист задает абсолютный шестнадцатеричный адрес. Последние отладчики допускают символьные значения адресов, которые программист определяет в исходной программе; это позволяет значительно экономить время, распечатывая после каждого редактирования и транслирования программы новую копию листинга.
При тестировании можно планировать проверку всех возможных маршрутов исполнения программы для разных исходных переменных. Однако это реализуемо только для очень простых программ небольшого объема при малых диапазонах изменения исходных данных. Поэтому при планировании отладки программ применяют критерии полноты тестирования, которые, однако, не гарантируют полной проверки программ. Выбор критерия зависит от наличия ресурсов для тестирования и структурной сложности отлаживаемой программы. Критерии характеризуются глубиной контроля программ и объемом проверок.
В процессе отладки основная часть неисправностей в программах обнаруживается и затем устраняется. Однако всегда возможен пропуск нескольких неисправностей.
Средства отладки программ должны:
-
управлять исполнением программ (останавливать, изменять порядок, запускать и т. д.)
-
собирать информацию о ходе выполнения программы
-
обеспечивать обмен информацией (диалог) между программистом и ЭВМ на уровне языка программирования
-
моделировать работу отсутствующих аппаратных средств микропроцессорной системы.
Комплексная отладка микропроцессорных систем
Как правило, микропроцессорная система - это система реального времени, т. е. корректность ее функционирования зависит от времени выполнения отдельных программ и скорости работы аппаратуры. Поэтому система считается отлаженной после того, как рабочие программы правильно функционируют на действительной аппаратуре системы в реальных условиях. Дополнительным свойством, которым должны обладать средства комплексной отладки по сравнению со средствами автономной отладки, является возможность управления поведением МПС и сбора информации о ее поведении в реальном времени.
Тенденция развития средств отладки микропроцессорных систем состоит в объединении свойств нескольких приборов в одном комплексе, в создании универсальных средств, пригодных для автономной отладки аппаратуры, генерации и автономной отладки программ и комплексной отладки системы. Эти средства позволяют вести разработку и отладку, постепенно усложняя аппаратуру и программы. При этом разработка, изготовление и отладка планируются поэтапно с нарастанием сложности; новая, неотлаженная аппаратура и программа вводятся в создаваемую систему, присоединяются к проверенной ее части.
Если отладка программ ведется с использованием эмуляционного ОЗУ, а затем изготовляются микросхемы ПЗУ, то микропроцессорная система должна быть протестирована.
Средства отладки на последних этапах не должны влиять на правильность функционирования системы, вносить задержки, дополнительные нагрузки.
При комплексной отладке наряду с детерминированным используется статистическое тестирование, при котором МПС проверяется при изменении исходных переменных в соответствии со статистическими законами работы источников информации. Полнота контроля работоспособности проектируемой системы возрастает за счет расширения диапазона возможных сочетаний переменных и соответствующих им логических маршрутов обработки информации.
Существуют пять основных приемов комплексной отладки микропроцессорной системы:
-
останов функционирования системы при возникновении определенного события
-
чтение (изменение) содержимого памяти или регистров системы
-
пошаговое отслеживание поведения системы
-
отслеживание поведения системы в реальном времени
-
временное согласование программ.
Комплексная отладка завершается приемосдаточными испытаниями, показывающими соответствие спроектированной системы техническому заданию. Для проведения комплексной отладки МПС используют логические анализаторы и комплексы: оценочные, отладочные, развития микропроцессоров, диагностирования, средств отладки.
Отладчик
Отладчик является своеобразным мостом между разработчиком и отладочным средством. Состав и объем информации, проходящей через средства ввода-вывода, доступность ее для восприятия, контроля, и, при необходимости, для коррекции и модификации напрямую зависят от свойств и качества отладчика.
Хороший отладчик позволяет осуществлять:
-
Загрузку отлаживаемой программы в память системы;
-
Вывод на монитор состояния и содержимого всех регистров и памяти, и при необходимости, их модификацию;
-
Управление процессом эмуляции.
-
Более мощные отладчики, обычно их называют высокоуровневыми (High-Level Debuggers), помимо этого, позволяют:
-
Вести символьную отладку, благодаря тому, что отладчик “знает” адреса всех символьных переменных, массивов и структур (за счет использования специальной информации, поставляемой компилятором). При этом пользователь может оперировать более приемлемыми для человека символьными именами, не утруждая себя запоминанием их адресов;
-
Контролировать и анализировать не только дисассемблированный текст, но и исходный текст программы, написанной на языке высокого уровня, и даже с собственными комментариями.
-
Такой отладчик позволяет пользователю одновременно контролировать ход выполнения программы и видеть соответствие между исходным текстом, образом программы в машинных кодах, и состоянием всех ресурсов эмулируемого микроконтроллера.
-
Следует отметить, что высокоуровневый отладчик обеспечивает выполнение всех своих функций только в том случае, если используется кросс-компилятор, поставляющий полную и правильную отладочную информацию (не все компиляторы, особенно их пиратские версии, поставляют такую информацию) и при этом формат ее представления должен быть “знаком” отладчику.
Симуляторы
Симулятор - программное средство, способное имитировать работу микроконтроллера и его памяти. Как правило, симулятор содержит в своем составе:
-
Отладчик;
-
Модель ЦПУ и памяти.
Более продвинутые симуляторы содержат в своем составе модели встроенных периферийных устройств, таких, как таймеры, порты, АЦП, системы прерываний.
Симулятор должен уметь загружать файлы программ во всех популярных форматах, максимально полно отображать информацию о состоянии ресурсов симулируемого микроконтроллера, а также предоставлять возможности по симуляции выполнения загруженной программы в различных режимах. В процессе отладки модель “выполняет” программу, и на экране компьютера отображается текущее состояние модели. Загрузив программу в симулятор, пользователь имеет возможность запускать ее в пошаговом или непрерывном режимах, задавать условные и безусловные точки останова, контролировать и свободно модифицировать содержимое ячеек памяти и регистров симулируемого микропроцессора. С помощью симулятора можно быстро проверить логику выполнения программы, правильность выполнения арифметических операций.
В зависимости от класса используемого отладчика, различные симуляторы могут поддерживать высокоуровневую символьную отладку программ.
Некоторые модели симуляторов могут содержать ряд дополнительных программных средств, таких, например, как: интерфейс внешней среды, встроенную интегрированную среду разработки.
В реальной системе микроконтроллер обычно занимается считыванием информации с подключенных внешних устройств (датчиков), обработкой этой информации и выдачей управляющих воздействий на исполнительные устройства. Чтобы в симуляторе не обладающем интерфейсом внешней среды смоделировать работу датчика, нужно вручную изменять текущее состояние модели периферийного устройства, к которому в реальной системе подключен датчик. Если, например, при приеме байта через последовательный порт взводится некоторый флажок, а сам байт попадает в определенный регистр, то оба эти действия нужно производить в таком симуляторе вручную. Наличие же интерфейса внешней среды позволяет пользователю создавать и гибко использовать модель внешней среды микроконтроллера, функционирующую и взаимодействующую с отлаживаемой программой по заданному алгоритму.
Очевидной особенностью программных симуляторов является то обстоятельство, что исполнение программ, загруженных в симулятор, происходит в масштабе времени, отличном от реального. Однако, низкая цена, возможность ведения отладки даже в условиях отсутствия макета отлаживаемого устройства делают программные симуляторы весьма эффективным средством отладки. Отдельно необходимо подчеркнуть, что существует целый класс ошибок, которые могут быть обнаружены только при помощи симулятора.
Трассировщик
В сущности, трассировщик представляет собой логический анализатор, работающий синхронно с процессором и фиксирующий поток выполняемых инструкций и состояния выбранных внешних сигналов. Существуют модели внутрисхемных эмуляторов, которые позволяют трассировать не только внешние сигналы, но и состояния внутренних ресурсов микроконтроллера, например, регистров. Такие эмуляторы используют специальные версии микроконтроллеров (эмуляционные кристаллы).
Процессор точек останова
Процессор точек останова позволяет останавливать выполнение программы или выполнять иные действия, например запускать или останавливать трассировщик при выполнении заданных пользователем условий. В отличие от механизма обычных точек останова, процессор точек останова позволяет формировать и отслеживать условия практически любой степени сложности, и при этом эмулируемый процесс не выводится из масштаба реального времени.
Профилировщик
Профилировщик (иначе анализатор эффективности программного кода) позволяет получить по результатам прогона отлаживаемой программы следующую информацию:
-
Количество обращений к различным участкам программы;
-
Время, затраченное на выполнение различных участков программы.
-
Анализ статистической информации, поставляемой профилировщиком, позволяет легко выявлять “мертвые” или перенапряженные участки программ, и в результате оптимизировать структуру отлаживаемой программы.
Аппаратные средства разработки и отладки микроконтроллеров.
К числу основных инструментальных средств отладки относятся:
-
Внутрисхемные эмуляторы;
-
Программные симуляторы;
-
Платы развития (оценочные платы);
-
Мониторы отладки;
-
Эмуляторы ПЗУ.
Данный список не исчерпывает всех типов существующих инструментальных средств отладки. Кроме указанных, существуют и комбинированные устройства и наборы, которые позволяют компенсировать недостатки основных средств, взятых порознь.
Внутрисхемный эмулятор - программно аппаратное средство, способное замещать собой эмулируемый процессор в реальной схеме. Внутрисхемный эмулятор - это наиболее мощное и универсальное отладочное средство.
По сути дела, "хороший" внутрисхемный эмулятор делает процесс функционирования отлаживаемого контроллера прозрачным, т.е. легко контролируемым, произвольно управляемым и модифицируемым по воле разработчика.
Функционально внутрисхемные эмуляторы делятся на стыкуемые с внешней вычислительной машиной (обычно это бывает IBM PC), и функционирующие автономно. Автономные внутрисхемные эмуляторы имеют индивидуальные вычислительные ресурсы, средства ввода-вывода, не требуют для своей нормальной работы стыковки с какими-либо внешними вычислительными средствами, но за это пользователю приходится расплачиваться либо существенно более высокой ценой, либо пониженными функциональными и сервисными возможностями по сравнению с аналогичными моделями, стыкуемыми с IBM PC.
Обычно, стыковка внутрисхемного эмулятора с отлаживаемой системой производится при помощи эмуляционного кабеля со специальной эмуляционной головкой. Эмуляционная головка вставляется вместо микроконтроллера в отлаживаемую систему. Если микроконтроллер невозможно удалить из отлаживаемой системы, то использование эмулятора возможно, только если этот микроконтроллер имеет отладочный режим, при котором все его выводы находятся в третьем состоянии. В этом случае для подключения эмулятора используют специальный адаптер-клипсу, который подключается непосредственно к выводам эмулируемого микроконтроллера.
Как минимум, эмулятор содержит следующие функциональные блоки:
-
Отладчик;
-
Узел эмуляции микроконтроллера;
-
Эмуляционная память;
-
Подсистема точек останова.
Более продвинутые модели могут содержать дополнительно:
-
Процессор точек останова;
-
Трассировщик;
-
Профилировщик (анализатор эффективности программного кода);
-
Таймер реального времени;
Интегрированная среда разработки.
Интегрированная среда разработки - это совокупность программных средств, поддерживающая все этапы разработки программного обеспечения от написания исходного текста программы до ее компиляции и отладки, и обеспечивающая простое и быстрое взаимодействие с другими инструментальными средствами (программным отладчиком-симулятором, внутрисхемным эмулятором, эмулятором ПЗУ и программатором).
Строго говоря, интегрированные среды разработки не относятся к числу средств отладки, тем не менее обойти вниманием данный класс программных средств, существенно облегчающий и ускоряющий процесс разработки и отладки микропроцессорных систем было бы неправильно.
При традиционном подходе, начальный этап написания программы строится следующим образом:
-
Исходный текст набирается при помощи какого-либо текстового редактора. По завершении набора, работа с текстовым редактором прекращается и запускается кросс компилятор. Как правило, вновь написанная программа содержит синтаксические ошибки, и компилятор сообщает о них на консоль оператора.
-
Вновь запускается текстовый редактор, и оператор должен найти и устранить выявленные ошибки, при этом сообщения о характере ошибок выведенные компилятором уже не видны, так как экран занят текстовым редактором.
И этот цикл может повторяться не один раз. Если программа имеет большой объем, собирается из различных частей, и подвергается длительному редактированию или модернизации, то даже этот начальный этап может потребовать много сил и времени. После этого наступает этап отладки программы и к редактору с компилятором добавляется эмулятор или симулятор, за работой которого хотелось бы следить прямо по тексту программы в текстовом редакторе.














