Главная » Просмотр файлов » Круглов В.В., Борисов В.В. - Искусственные нейронные сети (ИНС) Теория и практика

Круглов В.В., Борисов В.В. - Искусственные нейронные сети (ИНС) Теория и практика (778918), страница 3

Файл №778918 Круглов В.В., Борисов В.В. - Искусственные нейронные сети (ИНС) Теория и практика (Круглов В.В., Борисов В.В. - Искусственные нейронные сети (ИНС) Теория и практика) 3 страницаКруглов В.В., Борисов В.В. - Искусственные нейронные сети (ИНС) Теория и практика (778918) страница 32017-12-21СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

В большинстве нейронных моделей тип нейрона связан с его расположением в сети. Если нейрон имеет только выходные связи, то это входной нейрон, если наоборот — выходной нейрон, Однако возможен случай, когда выход топологически внутреннего нейрона рассматривается как часть выхода сети.

В процессе функционирования сети осуществляется преобразование входного вектора в выходной, некоторая переработка информации. Конкретный вид выполняемого сетью преобразования данных обусловливается не только характеристиками нейроподобных элементов, но и особенностями ее архитектуры, а именно топологией межнейронных связей, выбором определенных подмножеств нейроподобных элементов для ввода и вывода информации, способами обучения сети, наличием или отсутствием конкуренции между нейронами, направлением и способами управления и синхронизации передачи информации между нейронами.

С точки зрения топологии можно выделить три основных типа нейронных сетей: ° полносвязные (рис. 1.4, а); ° многослойные или слоистые (рис. 1.4, б); ° слабосвязные (с локальными связями) (рис. 1.4, в). В полносвязных нейронных сетях каждый нейрон передает свой выходной сигнал остальным нейронам, в том числе и самому себе. Все входные сигналы подаются всем нейронам. Выходными сигналами сети могут быть все или некоторые выходные сигналы нейронов после нескольких тактов функционирования сети. В многослойных нейронных сетях нейроны объединяются в слои. Слой содержит совокупность нейронов с едиными входными сигналами Число нейронов в слое может быть любым и не зависит от количества нейронов в других слоях.

В общем случае сеть состоит из Я слоев, пронумерованных слева направо. Внешние входные сигналы подаются на входы нейронов входного слоя (его часто нумеруют как нулевой), а выходами сети являются выходные 14 в) Рис 1 4. Архитектуры нейронных сетей. а- полносвязная сеть, б- многослойная сеть с последовательными связями, в — спабосвязные сети сигналы последнего слоя.

Кроме входного и выходного слоев в многослойной нейронной сети есть один или несколько скрытых слоев. Связи от выходов нейронов некоторого слоя д к входам нейронов следующего слоя (ц+1) называются последовательными. В свою очередь, среди многослойных нейронных сетей выделяют следующие типы. 1) Монотонные. Это частный случай слоистых сетей с дополнительными условиями на связи и нейроны. Каждый слой кроме последнего (выходного) разбит на два блока: возбуждающий и тормозящий. Связи между блоками тоже разделяются на тормозящие и возбуждающие. Если от нейронов блока А к нейронам блока В ведут только возбуждающие связи, то зто означает, что любой выходной сигнал 15 Выходной слой Входной слой Скрытый слой Рис 1 5 Многослойная (деухслойная) сеть прямого распространения блока является монотонной неубывающей функцией любого выходного сигнала блока А Если же зти связи только тормозящие, то любой выходной сигнал блока В является невозрастающей функцией любого выходного сигнала блока А Для нейронов монотонных сетей необходима монотонная зависимость выходного сигнала нейрона от параметров входных сигналов 2) Сегло без обрагпнык связей.

В таких сетях нейроны входного слоя получают входные сигналы, преобразуют их и передают нейронам первого скрытого слоя, и так далее вплоть до выходного, который выдает сигналы для интерпретатора и пользователя. Если не оговорено противное, то каждый выходной сигнал д-го слоя подастся на вход всех нейронов (ц+1)-го слоя; однако возможен вариант соединения д-го слоя с произвольным (д+р)-м слоем Среди многослойных сетей без обратных связей различают полносвязанные (выход каждого нейрона д-го слоя связан с входом каждого нейрона (с)+1)-го слоя) и частично полносвязанные.

Классическим вариантом слоистых сетей являются полносвязанные сети прямого распространения (рис. 1.б). 3) Сети с обратнымо связями В сетях с обратными связями информация с последующих слоев передается на предыдущие. Среди них, в свою очередь, выделяют следующие: ° слоисто-циклические, отличающиеся тем, что слои замкнуты в кольцо. последний слой передает свои выходные сигналы первому; все слои равноправны и могут как получать входные сигналы, так и выдавать выходные; 16 ° слоисто-полносвязанные состоят из слоев, каждый из которых представляет собой полносвязную сеть, а сигналы передаются как от слоя к слою, так и внутри слоя; в каждом слое цикл работы распадается на три части.

прием сигналов с предыдущего слоя, обмен сигналами внутри слоя, выработка выходного сигнала и передача к последующему слою, ° полносвязанно-слоистые, по своей структуре аналогичные слоисто-полносвязанным, но функционирующим по-другому: в них не разделяются фазы обмена внутри слоя и передачи следующему, на каждом такте нейроны всех слоев принимают сигналы от нейронов как своего слоя, так и последующих В качестве примера сетей с обратными связями на рис.

1 б представлены частично-рекуррентные сети Элмана и Жордана. Вьио слой слой слой Рис 1 6 Частично-рекуррентные сети а- Элыана, б-Жордана В слабосвязных нейроннык сетях нейроны располагаются в узлах прямоугольной или гексагональной решетки Каждый нейрон связан с четырьмя (окрестность фон Неймана), шестью (окрестность Голея) или восемью (окрестность Мура) своими ближайшими соседями. Известные нейронные сети можно разделить по типам структур нейронов на гомогенные (однородные) и гетерогенные. Гомо- генные сети состоят из нейронов одного типа с единой функцией активации, а в гетерогенную сеть входят нейроны с различными функциями активации.

Существуют бинарные и аналоговые сети. Первые из них оперируют только двоичными сигналами, и выход каждого нейрона может принимать значение либо логического ноля (заторможенное состояние) либо логической единицы (возбужденное состояние). Еще одна классификация делит нейронные сети на синхронные и асинхронные. В первом случае в каждый момент времени лишь один нейрон меняет свое состояние, во втором — состояние меняется сразу у целой группы нейронов, как правило, у всего слоя.

Апгоритмически ход времени в нейронных сетях задается итерационным выполнением однотипных действий над нейронами Далее будут рассматриваться только синхронные сети Сети можно классифицировать также по числу слоев. Теоретически число слоев и число нейронов в каждом слое может быть произвольным, однако фактически оно ограничено ресурсами компьютера или специализированных микросхем, на которых обычно реализуется нейронная сеть. Чем сложнее сеть, тем более сложные задачи она может решать. Выбор структуры нейронной сети осуществляется в соответствии с особенностями и сложностью задачи.

Для решения отдельных типов задач уже существуют оптимальные конфигурации, описанные в приложении. Если же задача не может быть сведена ни к одному из известных типов, приходится решать сложную проблему синтеза новой конфигурации. При этом необходимо руководствоваться следующими основными правилами: ° возможности сети возрастают с увеличением числа нейронов сети, плотности связей между ними и числом слоев; ° введение обратных связей наряду с увеличением возможностей сети поднимает вопрос о динамической устойчивости сети; ° сложность алгоритмов функционирования сети, введение нескольких типов синапсов способствует усилению мощности нейронной сети.

18 Вопрос о необходимых и достаточных свойствах сети дпя решения задач того ипи иного рода представляет собой целое направление нейрокомпьютерной науки. Так как проблема синтеза нейронной сети сильно зависит от решаемой задачи, дать общие подробные рекомендации затруднительно В большинстве случаев оптимальный вариант получается на основе интуитивного подбора, хотя в литературе приведены доказательства того, что дпя любого алгоритма существует нейронная сеть, которая может его реализовать.

Остановимся на этом подробнее. Многие задачи распознавания образов (зритепьных, речевых), выполнения функциональных преобразований при обработке сигналов, управления, прогнозирования, идентификации сложных систем, сводятся к следующей математической постановке. Необходимо построить такое отображение Х -+ У, чтобы на каждый возможный входной сигнал Х формировался правильный выходной сигнал У. Отображение задается конечным набором пар (<вход>, <известный выход>).

Число этих пар (обучающих примеров) существенно меньше общего числа возможных сочетаний значений входных и выходных сигналов. Совокупность всех обучающих примеров носит название обучающей выборки. В задачах распознавания образов Х вЂ” некоторое представление образа (изображение, вектор), У вЂ” номер кпасса, к которому принадлежит входной образ.

В задачах управления Х вЂ” набор контролируемых параметров управляемого обьекта, У вЂ” код, определяющий управляющее воздействие, соответствующее текущим значениям контролируемых параметров. В задачах прогнозирования в качестве входных сигналов используются временные ряды, представляющие значения контролируемых переменных на некотором интервале времени. Выходной сигнал — множество переменных, которое является подмножеством переменных входного сигнала.

При оденгпификэцио Х и У представляют входные и выходные сигналы системы соответственно. Вообще говоря, большая часть прикпадных задач может быть сведена к реализации некоторого сложного функционального многомерного преобразования. В результате отображения Х -+ У необходимо обеспечить формирование правильных выходных сигналов в соответствии: ° со всеми примерами обучающей выборки; ° со всеми возможными входными сигналами, которые не вошли в обучающую выборку. 19 Второе требование в значительной степени усложняет задачу формирования обучающей выборки В общем виде зта задача в настоящее время еще не решена однако во всех известных случаях может быть найдено частное решение 1.3.1.

Характеристики

Список файлов книги

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6384
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее