P. K. Nag. Engineering Thermodynamics (776119), страница 2
Текст из файла (страница 2)
. . . . . . . . . .Estimation of max cooling rate of a system . . . . . .Finding the final temperature and heat transferred in afluid . . . . . . . . . . . . . . . . . . . . . . . . . . . .Finding the final temperature and heat transferred in afluid . . . . . . . . . . . . . . .
. . . . . . . . . . . . .Heat calculation on a fluid . . . . . . . . . . . . . . .Heat calculation for a reversible adiabatic process . . .Heat calculations on a reversible polytropic process . .Calculation on PV cycle of ideal monoatomic gas . . .Pressure calculation in a system of two vessels .
. . . .Heat calculation on a gas in constant volume chamberCalculation of work done in expansion of a gas . . . .Calculation of work and heat transfer on a path . . . .Heat calculations over a cycle . . . . . . . . . . . . . .Heat calculations on an ideal gas . . . . . . .
. . . . .Calculations on internal combustion engine . . . . . .Calculations on a mixture of ideal gases . . . . . . . .Finding the increase in entropy of gas . . . . . . . . .Calculations os specific properties of neon . . . . . . .Finding the vapour pressure of benzene . . . . . . . .Calculations on vapours of benzene . . .
. . . . . . . .Thermodynamic calculation on a system of two simplesystems . . . . . . . . . . . . . . . . . . . . . . . . . .Calculation of work required for compression of steamCalculations on steam on a cycle . . . . . . . . . . . .Calculation on stem power plant . . . . . . . . . . . .Calculations on steam power plant . . .
. . . . . . . .Calculations on single heater regenerative cycle . . . .Calculations on steam power plant . . . . . . . . . . .Calculations on expansion of steam in a turbine . . . .Calculations on steam power plant . . . . . . . . . . .Calculations on steam in a chemical plant . . . . . . .Calculation of oil consumption per day in a factory . .Calculations on a steam turbine . . . .
. . . . . . . .Calculations on a binary vapour cycle . . . . . . . . .Calculations on otto cycle . . . . . . . . . . . . . . . .Calculations on a diesel engine . . . . . . . . . . . . .86667686969707172737474757576767779798181828383848585868788909191929495ExaExaExaExa13.313.413.513.6Exa 13.7Exa 13.8Exa 13.10ExaExaExaExaExaExaExaExaExaExaExaExaExaExaExaExaExaExaExaExaExaExaExaExaExaExaExa13.1114.114.214.314.414.514.614.714.814.915.115.215.315.415.515.715.815.916.216.316.516.616.716.816.916.1016.11Calculations on air standard diesel cycle . . .
. . . . .Calculations on air standard dual cycle . . . . . . . . .finding the increase in cycle efficiency of gas turbine plantCalculations on gas turbine plant operating on brytoncycle . . . . . . . . . . . . . . . . . . . . . . . . . . . .Calculations on an ideal bryton cycle . . . .
. . . . . .Calculations on stationary gas turbine . . . . . . . . .Calculations on air flying through the engine of a turbojet aircraft . . . . . . . . . . . . . . . . . . . . . . .Calculations on a combined GT ST plant . . . . . . .Finding the power required to drive a cold storage plantHeat calculations on a refrigerator .
. . . . . . . . . .Calculations on refrigeration by a simple R 12 plant .Calculations on R 12 vapour compression plant . . . .Calculation on work and COP of two stage refrigerationsystem . . . . . . . . . . . . . . . . . . . .
. . . . . .Estimation of COP of refrigeration . . . . . . . . . . .Calculations on a aircraft cooling system . . . . . . . .Calculations on a vapour compression heat pump . . .Calculations on air refrigeration system cycle . . . . .Calculations on atmospheric air . . . . . . . . . . .
. .Calculating the humidity of air water mixture . . . . .Calculations on air temperature and mass of water . .Calculations on an air conditioning system . . . . . . .Calculation on air mixed with RH . . . . . . . . . . .Calculation on the airconditioning of a hall . . . . . .Calculations on water into a cooling tower . . . . . . .Calculations on air flow rate into a cooling tower .
. .Dissociation calculation on N2O4 . . . . . . . . . . . .Determination of gubbs constant and equillibrium function . . . . . . . . . . . . . . . . . . . . . . . . . . . .Calculation of equillibrium constant . . . . . . . . . .Estimation of Cp of H2O dissociation . . . . . . . . .Calculations on combustion of unknown hydrocarbon .Determination of heat transfer in per kg mol of a fuelCalculations on a gasoline engine . .
. . . . . . . . . .Calculations on burning of liquid octane . . . . . . . .Calculations on burning of gaseous propane . . . . . .995969697989899100101101102103103104105105106107108108109109110110111112112113113113114114115115ExaExaExaExaExaExaExaExaExaExaExaExaExaExaExaExaExaExaExa16.1216.1317.117.217.3Determination of chemical energy of phases of water .Calculation on burning of liquid octane . . .
. . . . .Calculation s on flow of air through a duct . . . . . . .Calculations on canonical air diffuser . . . . . . . . . .Calculations on air flow through convergent divergentnozzle . . . . . . . . . . . . . . . . . . . . . . . . . .
.17.4 Calculations on pitot tube immersed in a supersonic flow17.5 Calculations on a CD nozzle operating at off design condition . . . . . . . . . . . . . . . . . . . . . . . . . . .17.6 Calculations on expansion of air through a convergentnozzle . . . . . . . . . . . . . . . . . . . . .
. . . . . .17.7 Calculations on an ideal gas undergoing a normal shock18.1 Calculations on a single reciprocating compressor . . .18.2 Calculations on a single reciprocating air compressor .18.3 Calculations on a two stage air compressor with perfectintercoolings . . . . . . . . . . . . . .
. . . . . . . . .18.4 Calculations on a single acting two stage air compressors18.5 Determination of out put power of an air engine . . .18.6 Calculations on a three stage acting reciprocating aircompressor . . . . . . . . . . . . . . . . . . . . . . .
.18.7 Determining the work input for a vane type compressor18.8 Determination of power required to drive the roots blower18.9 Calculations on a gas turbine utilizing a two stage centrifugal compressor . . . . . . . . . . . . . . . . . . . .18.10 Calculations on a rotatry compressor . . . . . . . . . .10116117119120121122123123124125126126127127128129129130130Chapter 1IntroductionScilab code Exa 1.1 Calculting gas pressured_r = 13640; // D e n s i t y o f m e r c u r y i n kg /m3g = 9.79; // A c c e l e r a t i o n due t o g r a v i t y i n m/ s 2z = 562 e -03; // D i f f e r e n c e i n h e i g h t i n mz0 = 761 e -03; // R e a d i n g o f b a r o m e t e r i n mP = ( d_r * g *( z + z0 ) ) *(0.987/1 e05 ) ; // Gas P r e s s u r e i nbar6 disp ( ” b a r ” ,P , ” Gas P r e s s u r e i s ” )12345Scilab code Exa 1.2 Calculating inlet and exhaust pressure in pascals12345678d_r = 13.6 e03 ; // D e n s i t y o f m e r c u r y i n kg /m3g = 9.81; // A c c e l e r a t i o n due t o g r a v i t y i n m/ s 2z = 710 e -03; // S t e a n f l o w p r e s s u r e i n mz0 = 772 e -03; // R e a d i n g o f b a r o m e t e r i n mP = 1.4 e06 ; // Gauge p r e s s u r e o f a p p l i e d steam i n PaP0 = d_r * g * z0 ; // A t m o s p h e r i c p r e s s u r e i n PaPi = P + P0 ; // I n l e t steam p r e s s u r e i n PaPc = d_r * g *( z0 - z ) ; // C o n d e n s e r p r e s s u r e i n Pa11910disp ( ”Pa” ,Pi , ” I n l e t steam p r e s s u r e i s ” )disp ( ”Pa” ,Pc , ” C o n d e n s e r p r e s s u r e i s ” )Scilab code Exa 1.3 Converting various readings of pressure in kPa1234567891011121314151617181920z = 0.760; // B a r o m e t e r r e a d i n g i n m// P a r t ( a )h1 = 40 e -02; // Mercury h e i g h t i n vaccume i n md_r = 13.6 e03 ; // D e n s i t y o f m e r c u r y i n kg /m3g = 9.80; // A c c e l e r a t i o n due t o g r a v i t y i n m/ s 2Patm = z * d_r * g ; // A t m o s p h e r i c p r e s s u r e i n PasPv = h1 * d_r * g ; // P r e s s u e i n vaccume i n PaPabs = Patm - Pv ; // A b s o l u t e p r e s s u r e i n Padisp ( ”Pa” , Pabs , ” 40cmHg vaccume i s ” )// P a r t ( b )h2 = 90 e -02; // Mercury h e i g h t i n g a u g e i n mPg = h2 * d_r * g ; // Gauge P r e s s u r e i n PaPabs1 = Patm + Pg ; // A b s o l u t e p r e s s u r e i n Padisp ( ”Pa” , Pabs1 , ” 90cmHg g a u g e i s ” )// P a r t ( c )d_w = 1 e03 ; // D e n s i t y o f w a t e r i n kg /m3h3 = 1.2 ; // Gauge P r e s s u r e w a t e r h e i g h t i n mPga = d_w * h3 * g ; // Gauge P r e s s u r e i n PaPabs3 = Patm + Pga ; // A b s o l u t e p r e s s u r e i n Padisp ( ”Pa” , Pabs3 , ” 1 .
2 m H2O g a u g e i s ” )Scilab code Exa 1.4 Calculating the depth of earth atmosphere requiredto produce given pressure1 Pr = 1.033 e05 ; // R e q u i r e d P r e s s u r e i n b a r2 function y = pressure ( p )3y = p ^( -0.714) ;4 endfunction ;125 g = 9.81; // A c c e l e r a t i o n due t o g r a v i t y i n m/ s 26 H = ((2.5 e05 ^0.714) / g ) * intg (0 , Pr , pressure ) ; // Depthof atmosphere r e q u i r e d in m7 disp ( ”Km” ,H /1000 , ” The d e p t h o f a t m o s p h e r e r e q u i r e di s ”)Scilab code Exa 1.5 Determining net upward force experienced by astrounaut12345m = 68 ; // A s t r o n a u t mass i n Kgg = 9.806; // A c c e l e r a t i o n due t o g r a v i t y i n m/ s 2a = 10* g ; // L i f t o f f a c c e l e r a t i o n i n m/ s 2F = m * a ; // Net v e r t i c a l f o r c e i n Ndisp ( ”N” ,F , ” Net v e r t i c a l f o r c e e x p e r i e n c e d byastronaut i s ”)13Chapter 2TemperatureScilab code Exa 2.1 Calculations on straight bore thermometer1 d = 1; l = 1; // Assuming2 A_ACDB = ( %pi /4) *(1/3) *((1.05* d ) ^2) *10.5* l - ( %pi /4)*(1/3) * d ^2*10* l ; // Area o f ABCD3 A_AEFB = ( %pi /4) *(1/3) *((1.1* d ) ^2) *11* l - ( %pi /4)*(1/3) * d ^2*10* l ;4 t = 100*( A_ACDB / A_AEFB ) ;5 disp ( ” d e g r e e C e l c i u s ” ,t , ” The s t r a i g h t b o r et h e r m o m e t e r r e a d i n g would e ” )Scilab code Exa 2.2 Calculation of thermometer reading1 t = poly (0 , ’ t ’ ) ;2 e = (0.2* t ) -(5e -04* t ^2) ; // e .m.














