159470 (767740), страница 4

Файл №767740 159470 (О размерности времени для юриста) 4 страница159470 (767740) страница 42016-08-02СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

Построим треугольник событий на плоскости (а) и в пространстве (б). Известная теорема Пифагора с2 = а2 + в2 для плоского прямоугольного треугольника служит нам также для вычисления длины радиус-вектора (расстояние данной точки от начала координат) r2 = x2 + y2 + z2 в трехмерной декартовой системе координат.

Обозначим два события А и Б на временной оси x . (рис. Временное расстояние между событиями А и Б определяется по формуле Пифагора (формула 1):

(расстояние АБ)2 = x2 + y2 + z2 (формула 1)

После элементарных преобразований получим следующую формулу (2)

(расстояние АБ) = x2 + y2 + z2 (формула 2)

Но формула 2 определяет трехмерное пространство, заданное тремя параметрами x, y, z. А наше пространство имеет еще временную координату t Но как же связать пространство с временем? Решение этой задачи осуществил А. Минковский в 1908 г, который ввел в эту формулу время t с отрицательным знаком - (минус), который указывает разную природу пространства и времени (формула 3).

(расстояние АБ) = x2 + y2 + z2 - t (формула 3)

Совершенно справедливо, что время и пространство - неразделимые части единого целого. Но, неверно, что время то же самое, что и пространство. Сложность математической модели, связывающей пространство и время состоит в том что они являются величинами несоизмеримыми друг с другом (время измеряетс в секундах, минутах, часах и т. п.), а расстояние - в миллиметрах, сантиметрах, метрах и т. п. Однако, время позволяет фиксировать перемещение точкит в пространстве до какого-то определенного события Б, ему то и будет соответствовать интервал t. Говоря языком логики это означает что природа пространства и времени различна, поэтому в формуле (3) стоит знак - (минус). Разница в знаках временного и пространственного членов в формуле (3) является специфичным свойством лоренцевой геометрии. В евклидовой геометрии расстояние (АБ) между двумя точками не может быть равно нулю, если только не равны нулю сразу все три величины - x, y и z. Напротив, интервал АБ между двумя событиями А и Б может оказаться равным нулю, когда разность временных координат для событий А и Б совпадает по величине с пространственным расстоянием (формула 4):

t = x2 + y2 + z2 (формула 4)

Пусть событие А произошло в начале координат диаграммы пространства-времени. Возмем произвольные координаты x, y, z события Б. Тогда временная координата события Б определяется либо формулой (5), либо формулой (6):

tбудущ = x2 + y2 + z2 (формула 5)

tпрошл = x2 + y2 + z2 (формула 6)

Теперь на основании этих логических умозаключений построим графическую зависимость пространства-времени с тремя пространственными координатами и временной координатой t. На этой диаграмме любое событие Б, отделенное от А нулевым интервалом лежит либо на “световом конусе будущего”(знак плюс в формуле (5) либо на “световом конусе прошлого” (знак минус в формуле (6) относительно А), область настоящего находится в плоскости y. Ничего подобного нет в геометрии! Такую четырехмерную систему пространства-времени невозможно изобразить в виде модели, так как наши представления работают лишь в пределах трохмерного пространства. Преобразуем координату z в координату времени ict (где, t-время, с-скорость света, i множитель, равный -1, а координаты x и y будут лежать в перпендикулярной плоскости. Каждая точка в таком пространстве является событием, происходящим в данный момент времени в данной точке. Отрицательной полуоси времени соответствует область прошлого, положительной - область настоящего. Все события происходящие одновременно, располагаются на плоскостях, параллельной плоскости xy, а события, происходящие в одной и той же точке в разные моменты времени, расположены на прямых, параллельной оси времени. В такой трехмерной картине пространства-времени линия распространения света образует световой конус под углом к оси ict на 450. Смысл таких преобразований заключается в том, что умножая время t на скорость света c и на множитель i, мы превращаем время в длину!

Анализируя полученную диаграмму пространства-времени А. Минковский пришел к следующим логическим умозаключениям:

1. Может ли частица, испущенная в А, провлиять на то, что должно произойти в С? Если да, то С лежит внутри светового конуса будущего с вершиной в А.

2. Может ли свет, испущенный в А, повлиять на то, что должно произойти в Б? Если да, то Б лежит на световом конусе будущего с вершиной А.

3. Может ли быть, что ничто, происходящее в А, не способно повлиять на то, что происходит в Г? Если да, то Г лежит вне светового конуса будущего с вершиной в А.

4. Может ли свет, испущенный в Д, повлиять на то, что происходит в А? Если да, то Д лежит внутри светового конуса прошлого с вершиной в А.

5. Может ли свет, испущенный в Ж, повлиять на то, что происходит в А? Если да, то Ж лежит на световом конусе прошлого с вершиной в А.

Все выводы логически выводятся из модели пространства-времени Минковского (рис. )

Таким образом, время - философская категория, форма существования (бытия) материи, выражающая ее течение, длительность и последовательность смены состояний от прошлого через настоящее к будущему. Время находится в диалектической связи с пространства. Время одномерно, пространство трехмерно, математическая модель единого пространства-времени четырехмерна и изображает реальный мир. Время объективно, т. е. существует независимо от сознания. Его течение направлено по прямой и одинаково для всех систем отсчета.

Методы философского и математического анализа не только раскрывают для будущего юриста философскую сущность времени, его свойства и связь с пространством, но позволяют строить математические модели пространства-времени, способствующие более глубокому философскому и естественно-научному пониманию временно-пространственных явлений физического мира, но и помогают строить абстрактные математические картины, мыслить пространственно в пространственно-временной системе координат.

ЛИТЕРАТУРА.

1. Философский энциклопедический словарь. Ред. Ильичев Л. Ф., Москва., 1983, стр. 94-95.

2. Молчанов Ю. Б., Четыре концепции в философии и физике, М., 1977, стр. 67-89; Аскин Я.

3. Проблема времени. Ее философское истолкование, М., 1966, стр. 156-167.

4. The nature of time, Ithaca, N. Y., 1967, p. 112-154; Уитроу Жд., Естественная философия времени., пер. с англ., М., 1964, стр. 65-78.

5. Уитроу Жд., Естественная философия времени., пер. с англ., М., 1964, стр. 65-78.

6. Гегель. Сочинения, М.:, 2001, стр. 53.

7. А. Бергсон. Длительность и одновременность. М.: Наука. 2001, стр. 87.

8. Дж. Синг. Общая теория относительности. М.: 1983, стр. 99-102.

9. См. А. М. Мостепаненко. Пространство, время, движение. М : Наука, 1971, стр. 35-39.

10. J. Jeans. Physics and philoshopy. Cambridge and New York, 1945, p. 57-58.

11. Э. Тейлор, Дж. Уилер. Физика пространства времени, М., Мир, 1971, стр. 35-37

12. H. Reichenbach. The philosophy of space and time. New York, 1958, p. 135-143.

13. З. Аугустынек. Топологические и групповые свойства времени. Диалектика и современное естествознание, М.: 1983, стр. 135.

14. H. Margenau. The nature of phisical reality. New York, 1950, p. 159-163.

15. H. Reichenbach. The philosophy of space and time, New York, p. 139.

16. J. Jeans. Physics and phillosophy. Cambridge and New York, 1945, p. 57-58.

17. И. Кант. Критика чистого разума. - Сочинения в шести томах, т. 3, М., 1964, стр. 136.

18. В. Abramenko. On dimentionality and continuity of physical space and time. - Brit. Journ. Phil. Sc., 1958, v. 9, ¹ 34, p. 123-124.

19. Биологические часы. М., 1964, стр. 23-58; Дж. Уитроу. Естественная философия времени. М., 1964, гл. 11, стр. 89-95.

20. Г. Рейхенбах. Напрвление времени. М.: 1971, стр. 38-43.

21. К. Куратовский. Топология времени, 1985, стр. 33.

22. А. М. Мостепаненко. К проблеме размерности времени. Вопросы философии, 1985, № 7.

23. Дж. Уитроу. Естественная философия времени. М., 1994. С. 20-56.

24. Я. Ф. Аскин. “Направление времени и временная структура процессов”. Пространство время движение. М., Наука, 1971, стр. 56-80.

25. Дж. Уитроу. Естественная философия времению М., 1964, стр. 400.

1 См. Мосин О. В. Разработка методов получения белков, аминокислот и нуклеозидов, меченных стабильными изотопами 2Н и 13С с высокими уровнями изотопного обогащения, диссертация к. х. н., М., МГАТХТ им. М. В. Ломоносова, 1996, стр 1-26.

2 См. Философский энциклопедический словарь. Ред. Ильичев Л. Ф., Москва., 1983, стр. 94-95.

3 Ньютон

4 Cм. Молчанов Ю. Б., Четыре концепции в философии и физике, М., 1977, стр. 67-89; Аскин Я. Ф., Проблема времени. Ее философское истолкование, М., 1966, стр. 156-167.

5 См. The nature of time, Ithaca, N. Y., 1967, p. 112-154; Уитроу Жд., Естественная философия времени., пер. с англ., М., 1964, стр. 65-78.

6 См. Уитроу Жд., Естественная философия времени., пер. с англ., М., 1964, стр. 65-78.

1 Гегель. Сочинения, М.:, 2001, стр. 53.

2 А. Бергсон. Длительность и одновременность. М.: Наука. 2001, стр. 87.

3 См. Дж. Синг. Общая теория относительности. М.: 1983, стр. 99-102.

4 См. А. М. Мостепаненко. Пространство, время, движение. М : Наука, 1971, стр. 35-39.

9 См. J. Jeans. Physics and philoshopy. Cambridge and New York, 1945, p. 57-58.

110 См. Э. Тейлор, Дж. Уилер. Физика пространства времени, М., Мир, 1971, стр. 35-37

5 См. H. Reichenbach. The philosophy of space and time. New York, 1958, p. 135-143.

6 Cм. З. Аугустынек. Топологические и групповые свойства времени. Диалектика и современное естетвознание, М.: 1983, стр. 135.

7 H. Margenau. The nature of phisical reality. New York, 1950, p. 159-163.

8 Cм. H. Reichenbach. The philosophy of space and time, New York, p. 139.

9 См. J. Jeans. Physics and phillosophy. Cambridge and New York, 1945, p. 57-58.

110 И. Кант. Критика чистого разума. - Сочинения в шести томах, т. 3, М., 1964, стр. 136.

111 В. Abramenko. On dimentionality and continuity of physical space and time. - Brit. Journ. Phil. Sc., 1958, v. 9, ¹ 34, p. 123-124.

112 См., например: “Биологические часы”. М., 1964, стр. 23-58; Дж. Уитроу. Естественная философия времени. М., 1964, гл. 11, стр. 89-95.

111 См. Г. Рейхенбах. Напрвление времени. М.: 1971, стр. 38-43.

112 См. К. Куратовский. Топология времени, 1985, стр. 33.

116 См. А. М. Мостепаненко. К проблеме размерности времени. Вопросы философии, 1985, № 7.

117 См. Дж. Уитроу. Естественная философия времени. М., 1994. С. 20-56.

111 См. статью Я. Ф. Аскина. “Направление времени и временная структура процессов”. Пространство время движение. М., Наука, 1971, стр. 56-80.

115 Дж. Уитроу. Естественная философия времению М., 1964, стр. 400.

Характеристики

Тип файла
Документ
Размер
215,46 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов статьи

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6451
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее