150419 (766865), страница 2

Файл №766865 150419 (К механизму электропроводности магнитной жидкости с графитовым наполнителем) 2 страница150419 (766865) страница 22016-08-02СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Пусть в результате такой ориентации полуось эллипсоида параллельна оси . В этом случае напряженность электрического поля Е1 вблизи поверхности проводящего эллипсоида определяется выражением (2), в котором необходимо заменить на

, (23)

, . (24)

Отталкивающее поле вблизи эллипсоида задастся формулой (7)

. (25)

Результирующее поле запишется в виде

. (26)

Из условия находим :

. (27)

Аналогично, запишем приближенные выражения для и в виде

, (28)

. (29)

Для результирующего поля запишем

. (30)

Выражение для элемента площади поверхности эллипсоида вращения в этом случае имеет вид

. (31)

Поток вектора напряженности электрического поля в этом случае определится формулой

. (32)

Из условия найдем предельный заряд частицы графита для случая, когда магнитное поле перпендикулярно электрическому полю:

. (33)

Введем следующие обозначения

, , (34)

которые назовем коэффициентами формы, соответственно, для эллипсоида, расположенного параллельно току, и перпендикулярно току. Тогда выражения для предельных зарядов, соответственно, запишутся в виде

, (35)

. (36)

Расчеты по формулам (35) и (36) показывают, что . Таким образом, частица графита ориентированная перпендикулярно электрическому полю заряжается больше, чем в случае, когда она ориентирована параллельно электрическому полю. Это приводит к уменьшению основного тока.

3. Удельная проводимость магнитной жидкости с графитовым наполнителем. Если бы описанный выше механизм не имел бы место, то невозмущенный ток можно записать, согласно определению [4], в виде

, (37)

где – плотность невозмущенного тока; – площадь обкладок ячейки [1]. Плотность тока записывается в виде [4]

, (38)

где – концентрация заряженных частиц магнетита в невозмущенном потоке; – удельная проводимость магнитной жидкости при отсутствии частиц графита; – скорость упорядоченного движения заряженных частиц магнетита. Отсюда удельную проводимость записывают в виде [4]

, , (39)

где – подвижность заряженных частиц магнетита; – объемный заряд невозмущенного потока.

Концентрацию частиц графита обозначим . В выражении для плотности тока необходимо учесть, что часть объемного заряда оседает на частицах графита и не участвует в токе. Поэтому для плотности тока, когда магнитное поле направлено параллельно электрическому полю, можно записать

. (40)

Отсюда для удельной проводимости получим

. (41)

Аналогично, получим выражение для удельной проводимости, когда магнитное поле направлено перпендикулярно току:

. (42)

Из (41) и (42) следует

. (43)

Учитывая, что , то (43) можно приближенно записать в виде

. (44)

Из (44) видно, что когда магнитное поле параллельно току, то удельная проводимость больше, чем когда магнитное поле перпендикулярно току. Аналогично, из (41) и (42) запишем выражения для удельных сопротивлений

, , (45)

где и – удельные сопротивления магнитной жидкости с графитовым наполнителем в магнитном поле, соответственно, параллельном электрическому полю и перпендикулярному электрическому полю; – удельное сопротивление магнитной жидкости в отсутствии частиц графита. В эксперименте [1] измерялось сопротивление ячейки. Соответственно, для сопротивлений запишем выражения

, , (46)

где – сопротивление магнитной жидкости в отсутствии частиц графита. Отсюда

, (47)

где . Откуда видно, что сопротивление ячейки в магнитном поле, параллельном электрическому полю, меньше, чем в магнитном поле, перпендикулярном электрическому полю.


С деланный вывод согласуются с данными экспериментальных исследований, результаты которых приведены на рисунке.

Таким образом, из вышеизложенного следует, что проводимость магнитной жидкости с графитовым наполнителем изменяется в зависимости от направления магнитного поля. Проводимость магнитной жидкости с графитовым наполнителем в магнитном поле, параллельном электрическому полю больше, чем в магнитном поле, перпендикулярном электрическому полю: .

4. Расчеты. Из формулы (47) следует, что анизотропия электрических свойств магнитной жидкости с графитовым наполнителем будет существенно зависеть от концентрации частиц графита, что действительно наблюдалось в эксперименте [1]. При малых концентрациях частиц графита эффект не существенен.

Концентрацию частиц графита найдем по формуле [8]

, (48)

где – объемная концентрация частиц графита. В эксперименте [1] объемная концентрация была равна , а радиус частиц графита был порядка мкм. Подставляя численные значения в (48), для полной концентрации частиц графита получим м-3. Примем мкм, мкм. Это соответствует эксцентриситетам и , соответственно, коэффициенты формы и . Примем . Объемный заряд, оседающий на частицах графита, равен Кл/м3. На частицу графита, расположенную перпендикулярно току, оседает на заряженных частиц магнетита больше, чем на частицу, расположенную параллельно току.

Согласно [9], объемный заряд можно оценить по формуле

, (49)

– постоянная Больцмана; – абсолютная температура.

В эксперименте [1] имело место отношение при напряженности электрического поля В/м. Для этого значения напряженности электрического поля объемный заряд, согласно (49), равен Кл/м3, что соответствует концентрации заряженных частиц магнетита м-3. Размер частиц магнетита примем равным нм. Объемная концентрация магнетита в эксперименте была . Тогда для концентрации частиц магнетита получим м-3. Отсюда видно, что не все частицы магнетита заряжены, что согласуется с результатами [9]. Подставляя численные значения в (47), получим теоретическое значение отношения. . Как видно теоретическое значение отношения сопротивлений почти в два раза меньше экспериментально наблюдаемого. Возможная причина расхождения теории с экспериментом может заключаться в полидисперсности частиц графита, применяемых в эксперименте. Расчеты же велись в предположении монодисперсности частиц графита.

Выводы. Предложен механизм, объясняющий анизотропию электрических свойств магнитной жидкости с графитовым наполнителем в магнитном поле. Думается, что имеют место оба механизма: и механизм, предложенный в [2], и в настоящей работе. В дальнейшем предполагается построить общую теорию, опирающуюся на оба предложенных механизма. В заключение выражаем благодарность профессору Ю. И. Диканскому, под научным руководством которого была выполнена настоящая работа.

Список литературы

  1. Смерек Ю.Л. Электрическая проводимость магнитной жидкости с мелкодисперсным наполнителем в магнитном поле. //Вестник СГУ. 2001. – Вып. 28. С. 184 – 187.

  2. Закинян Р.Г., Смерек Ю.Л., Закинян А.Р. Элементарная теория электропроводности магнитной жидкости с графитовым наполнителем. Записки физико-математического факультета. Выпуск 2.

  3. Закинян Р.Г., Смерек Ю.Л., Закинян А.Р. Об одном механизме электропроводности магнитной жидкости с графитовым наполнителем. // Проблемы физико-математических наук. Материалы 48 научно-методической конференции преподавателей и студентов. – Ставрополь, 2003. – С. 29 – 32.

  4. Калашников С.Г. Электричество. – М.: Наука, 1985. – 576 с.

  5. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Электродинамика сплошных сред. Т. 8. - М.: Наука, 1982. - 624 с.

  6. Ильин В.А., Позняк Э.Г. Основы математического анализа. Часть 1. – М.: Наука, 1971. – 510 с.

  7. Прудников А.П., Брычков Ю.А., Маричев О.И. Интегралы и ряды. – М.: Наука, 1981. – 799 с.

  8. Фертман В.Е. Магнитные жидкости. - Минск: "Вышейшая школа", 1988. - 184 с.

  9. Падалка В.В., Закинян Р.Г., Бондаренко Е.А. К вопросу об образовании объемного заряда в приэлектродном слое разбавленной магнитной жидкости. // Известия вузов. Северо-Кавказский регион. Естественные науки, 2002. - № 4. – С. 36 – 38.

Характеристики

Тип файла
Документ
Размер
1,68 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов статьи

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6381
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее