85379 (764005), страница 2

Файл №764005 85379 (Объект исследований - Солнце) 2 страница85379 (764005) страница 22016-08-02СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Во время гамма-спектрометрического исследования в 1990 году состояния пластин из различных материалов, которыми был покрыт цилиндр длиной 9 метров и диаметром 3 метра, (эксперимент LDEF) американские ученые обнаружили большую концентрацию Ве-7. До этого почти 6 лет цилиндр провел в открытом космосе, на высоте в среднем 350 км. В течение всего времени полета его положение в пространстве было строго сориентировано. Распределение радиоактивного бериллия было необычным. Большая концентрация наблюдалась лишь на тех пластинах, которые находились на передней по вектору скорости стороне. Из этого вытекало, что радиоактивный бериллий был в тепловом равновесии с веществом верхней атмосферы Земли и просто собирался, прилипал, к пластинам. Как это могло произойти? Откуда в верхней атмосфере Земли появился радиоактивный бериллий. Атмосфера Земли - гигантская ловушка солнечных частиц

Дальнейшее интенсивное изучение обнаруженного факта проводилось совместно американскими и российскими учеными. С 1996 года сотрудники отдела космофизических исследований, Института ядерных исследований МГУ с помощью ИСЗ серии "Космос" и "Ресурс" ведут непрерывные наблюдения в верхней атмосфере Земли, на высоте примерно 200 км. за радиоактивным Ве-7, чтобы выяснить природу его образования там. В гипотезах недостатка нет.

Во - первых он может возникать в земной атмосфере в результате ядерных взаимодействий галактических космических лучей с кислородом и азотом атмосферы Земли. В этом случае его концентрация в атмосфере должна испытывать временные вариации характерные для галактических космических лучей, то есть быть в антикорреляции с солнечной активностью.

Во - вторых он может возникать также как результат ядерных взаимодействий, но при вторжении в земную атмосферу солнечных энергичных частиц от вспышек. Тогда его концентрация должна, наоборот, быть в прямой корреляции со вспышечной активностью Солнца.

Казалось бы, все просто - надо установить временную зависимость концентрации Ве-7 в верхней атмосфере Земли и его природа станет ясна. Но существует такая трудность. Радиоактивный бериллий, возникая в земной атмосферы по причинам, указанным выше, образуется в основном, а затем и приходит в тепловое равновесие с окружающей атмосферой, на высотах гораздо меньших, чем высоты ИСЗ, - порядка десятков километров. Из этого следует, что должен ещё существовать механизм "заброса", образующихся на малых высотах ядер, на высоты спутников. Необходимость в существовании такого механизма может спутать все карты. Поскольку этот механизм может иметь свои собственные временные характеристики, которые либо имеют сложную связь с циклом солнечной активности, либо не имеют её вовсе.

Однако прежде чем предпринять усилия по экспериментальному выбору между приведенными гипотезами, пришлось вспомнить о существовании ещё двух возможностей объяснения присутствия радиоактивного Ве-7 в верхней атмосфере Земли. Ведь известно, мы об этом говорили выше, что среди СКЛ должны быть радиоактивные изотопы, генерированные в ядерных реакциях между средними и тяжелыми энергичными ядрами и водородом солнечной атмосферы. Энергия основной доли таких вторичных ядер составит единицы и десятки МэВ на нуклон. С одной стороны такой энергии достаточно, чтобы ядро смогло преодолеть барьер, создаваемый земной магнитосферой, и проникнуть вглубь атмосферы, с другой, поскольку ядро многозарядное, оно быстро затормозится и вступит в тепловое равновесие с земной атмосферой на достаточно большой высоте, чтобы затем оказаться на высотах ИСЗ. То есть речь идет о том, что зарегистрированный в атмосфере Земли радиоактивный бериллий - солнечного происхождения. Тогда, предсказанная в 1967 году, возможность эффективного образования радиоактивных элементов в СКЛ получает экспериментальное подтверждение.

Но Ве-7, зарегистрированный на высотах спутников в земной атмосфере, может иметь солнечное происхождение ещё и по другому каналу. Как следовало из детальных расчетов, проведенных независимо нами и специалистами из НАСА, концентрация бериллия в атмосфере Солнца, возможно, вообще определяется радиоактивным изотопом Ве-7. В этом случае он будет присутствовать в солнечном ветре, вместе с ним достигать орбиты Земли и проникать через полярные области в её верхнюю атмосферу.

Представляется, что выбрать между первыми двумя гипотезами и вторыми двумя можно, если бы удалось наблюдать в земной атмосфере элемент, который возникнуть в ней в результате ядерных реакций между галактическими или солнечными космическими лучами и элементами атмосферы Земли, не может. Таким элементом вполне может быть радиоактивный Со-56, который, кстати, мы выше уже обращали на это внимание, также очень эффективно должен образовываться среди вторичных изотопов СКЛ.

Если выяснится, что происхождение в земной атмосфере Ве-7 связано с солнечным ветром, то это подтвердит, развиваемые нами представления о том, что ядерные взаимодействия между СКЛ и веществом солнечной атмосферы существенно влияют на химический и изотопный состав самой солнечной атмосферы. Поскольку, как уже отмечалось, процесс ускорения энергичных частиц в атмосфере Солнца можно считать квазинепрерывным, то фактически оказывается, что в атмосфере Солнца идет постоянная "переработка" первичного вещества. Того вещества, из которого миллиарды лет назад возникло само Солнце и планеты Солнечной системы.

Современная космология утверждает, что химические элементы тяжелее гелия возникли, и возникают периодически и сейчас, при взрывах так называемых сверхновых звезд. Лишь элемент литий, возможно, также частично образовался во время Большого взрыва. Тем поразительнее обнаружение того факта, что в атмосфере такой рядовой звезды как Солнце (при этом надо помнить, что Солнце является типичным представителем звездного населения Галактики) может происходить переработка изотопного состава первичного вещества. В области легких и редких ядер этот процесс будет наиболее эффективным.

Поскольку вещество атмосферы звезд, также как и нашего Солнца, постоянно истекает в межзвездное пространство ( для Солнце это явление получило название - солнечный ветер), то вполне возможно, что не только сверхновые звезды определяют естественную распространенность химических элементов во Вселенной, но и рядовые звезды вносят свою лепту. Кроме того, лично для себя, для своей атмосферы, по-видимому, каждая звезда сама формирует изотопный состав радиоактивных ядер, период полураспада которых не очень большой. В этом смысле наше Солнце вполне может оказаться заслуживает называться радиоактивным.

Радиоактивное Солнце

Многочисленные определения химического состава атмосферы Солнца обнаружили странный на первый взгляд факт. По существующим представлениям о естественной распространенности химических элементов такого элемента как бериллий в атмосфере Солнца должно быть меньше чем такого элемента как литий. В тоже время для солнечной атмосферы это не так. В ней бериллия не только не меньше чем лития, но соотношение концентраций этих химических элементов меняется. И меняется, по-видимому, в согласии с циклом солнечной активности. Когда активность высокая (в этом случае много различных по мощности вспышек), отношение концентраций бериллия к литию явно больше единицы. При уменьшении солнечной активности соотношение концентраций этих элементов уменьшается. И тот, и другой факт можно понять, лишь учитывая возможность образования этих элементов в солнечной атмосфере. При этом ясно, что концентрация образующихся элементов будет меняться с циклом активности, если они не только эффективно возникают за короткое время, но и могут разрушаться за время сравнимое с циклом активности.

Среди изотопов бериллия есть только один стабильный изотоп. Это Ве-9. И два радиоактивных: Ве-7 (период полураспада около 53 суток) и Ве-10 (период полураспада несколько больше одного миллиона лет). Наиболее эффективно в ядерных процессах образуется лишь самый легкий изотоп - Ве-7. Связанно это вот с чем. При взаимодействии энергичных частиц СКЛ (наибольший вклад здесь вносят ядра водорода) с ядрами наиболее обильных средних и тяжелых элементов, составляющих атмосферу Солнца, углеродом, азотом, кислородом и железом вероятность образования Ве-7 из всех изотопов бериллия самая высокая. Однако более существенно то, что изотоп Ве-7 может возникать при так называемых реакциях ядерного синтеза элементов - когда в результате взаимодействия (слияния) двух легких ядер образуется более тяжёлое ядро.

Среди всех элементов, составляющих солнечную атмосферу, элемент гелий по своему обилию уступает лишь водороду. Он представлен в природе двумя изотопами. Не-4 наиболее распространенный и более редкий Не-3. При взаимодействии двух ядер Не-4 между собой могут образоваться изотопы лития и изотоп бериллия, Ве-7. Другие, более тяжелые, изотопы бериллия не образуются.

Реакция образования Ве-7 при взаимодействии изотопов Не-4 и Не-3 существенна потому, что это так называемая экзотермическая (то есть энергетически беспороговая) реакция. Она может протекать фактически даже при нулевой энергии взаимодействия. И хотя Не-3 гораздо менее обилен в природе, в частности в атмосфере Солнца, чем Не-4, а вероятность этой реакции не велика, ролью этой реакции пренебрегать нельзя. Поскольку, благодаря ей, свой вклад в полную концентрацию радиоактивного изотопа бериллия, Ве-7, вносят активные процессы на Солнце практически любой мощности.

То есть можно считать, что радиоактивный бериллий, изотоп Ве-7 (и только он) непрерывно образуется в атмосфере Солнца. Его концентрация может определить полную концентрацию элемента бериллия на Солнце. С другой стороны из-за того, что Ве-7 имеет сравнительно небольшое время жизни (около двух месяцев), при изменении солнечной активности в процессе 11- летнего цикла его концентрация будет уменьшаться.

Таким образом, возможно именно с этим связанны, упомянутые выше, особенности распространенности легких элементов в солнечной атмосфере: то, что распространенность бериллия выше (по крайней мере, не ниже) чем распространенность лития, что противоречит естественной распространенности этих элементов, и второе, то, что концентрация бериллия в солнечной атмосфере не постоянна. Отметим, что в результате радиоактивного распада изотопа Ве-7 образуется стабильный элемент литий. Причем только его более тяжелый изотоп Li-7. С учетом этого становится понятно, почему для атмосферы Солнца распространенность изотопа Li-7 почти в 10 раз выше распространенности изотопа Li-6.

Надо заметить, что окончательно роль радиоактивного изотопа Ве-7 для солнечной атмосферы и для межпланетной среды будет выяснена, когда его уверенно зарегистрируют в солнечном ветре.

Ядерные реакции синтеза элементов при малых энергиях взаимодействия оказываются чрезвычайно важными не только при рассмотрении вопросов образования химических элементов в природе, в частности в атмосферах звезд и нашего Солнца. Поскольку, как правило, синтезированное ядро оказывается возбужденным, то реакции синтеза элементов являются одним из важнейших источников гамма-излучения от Солнца.

Гамма вспышки в атмосфере Солнца

Итак, во время солнечных вспышек, как уже было отмечено, часть ядер различных химических элементов солнечной атмосферы ускоряется до значительных энергий. Ускоренные частицы взаимодействуют с ядрами элементов солнечной атмосферы. При этом и те, и другие переходят с определенной вероятностью в так называемое возбужденное состояние, которое, как правило, "снимается" с излучением гамма-кванта определенной энергии.

Проблемы солнечной гамма-астрономии интенсивно разрабатываются с семидесятых годов прошлого столетия до настоящего времени учеными многих стран мира, таких как США, России, Франции, Германии, Японии, Китая и др.

Первый успешный теоретический анализ гамма-излучения от солнечной вспышки, получивший на редкость точное экспериментальное подтверждение в американском космическом эксперименте при наблюдении гамма-излучения от мощных солнечных вспышек в августе 1972 года, был выполнен в Институте ядерной физики МГУ в 1967 году. К настоящему времени гамма-кванты от многих солнечных вспышек (солнечная гамма вспышка) наблюдались в околоземном космическом пространстве.

Рис. 5 Солнечная гамма-вспышка. Спектр гамма-излучения, полученный одновременно аппаратурой с космических кораблей "Венера - 13"(1) и "Венера - 14" (2). Хорошо видно, что в районе энергий квантов 0,4 - 0,6 МэВ нарушается обычный (степенной) вид спектра гамма-излучения. Это связанно с "включением " другого механизма генерации гамма-квантов.

Естественно, что величина потока гамма-квантов и его временные характеристики зависят от целого ряда параметров, определяющих саму солнечную вспышку. Таких, например, как энергетический спектр СКЛ и его временная эволюция, распределение плотности вещества солнечной атмосферы в области ядерного взаимодействия, полная длина пути, которую проходят энергичные частицы до выхода в межпланетное пространство.

Характеристики

Тип файла
Документ
Размер
9,52 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов статьи

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6367
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее