85353 (763990), страница 2

Файл №763990 85353 (Квантовый эффект Холла в двумерных системах) 2 страница85353 (763990) страница 22016-08-02СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Делались многочисленные попытки выяснить численное значение сопротивления образца в режиме квантового эффекта Холла и зависимость его от температуры. При наиболее низких температурах минимальное значение сопротивления RH < 10-7 Ом, причем оно очень сильно падает с понижением температуры. Однако следует признать, что в настоящее время, видимо, не существует до конца непротиворечивой теории, описывающей протекание тока в образце в режиме квантового эффекта Холла. Можно лишь утверждать, что важную роль в формировании токовых состояний играют примеси. С одной стороны они приводят к уширению уровней Ландау, а с другой вызывают локализацию электронных состояний. На рисунке приведен схематический график зависимости плотности состояний электронов N(E) от энергии.

Зависимости плотности состояний электронов от энергии при наличии примесей

Напомним, что выражение N(E)dE по определению имеет смысл числа разрешенных состояний в интервале энергии от E до E+dE. На этом рисунке пики соответствуют уширенным уровням Ландау, затененные области - локализованным, а светлые области вблизи экстремальных значений N(E) - токовым состояниям электронов проводимости.

Как только уровень Ферми за счет движения уровней Ландау по мере роста магнитного поля попадает в область делокализованных электронов, омическое сопротивление сразу обращается в нуль и остается таковым, пока уровень Ферми не попадет в область локализованных состояний. По существу эта простая идея может объяснить всю совокупность экспериментальных фактов для целочисленного квантового эффекта Холла, хотя, как уже отмечалось, при более детальном рассмотрении остается целый ряд не до конца понятных вопросов о природе холловского сопротивления.

Дробный квантовый эффект Холла

Дробный квантовый эффект Холла (ДКЭХ) был открыт в 1982 г Цуи, Штермером и Госсардом. Ими было обнаружено, что если высококачественный образец с малым количеством примесей поместить при очень низкой температуре (порядка 0.1 К) в магнитное поле напряженностью 15 - 20 Тл, то возникают холловские плато и глубокие провалы продольного сопротивления при дробных заполнениях самого нижнего уровня Ландау (i = 1/3, i = 2/3), подобно тому, как это имело место при целых числах заполнения.

Впоследствии оказалось, что наблюдаются и другие дробные значения, но они еще легче разрушаются "грязью" и требуют еще более низких температур. Типичные экспериментальные результаты приведены на рисунке.

Холловское и омическое сопротивления в режиме ДКЭХ

Здесь по оси абсцисс отложено магнитное поле в единицах Тесла, а по оси ординат значения холловского и омического сопротивлений. Стрелками отмечено значение магнитного поля, при котором омическое сопротивление минимально. На рисунке хорошо видно плато холловского сопротивления при дробном значении числа заполнения i = 1/3 уровня Ландау.

Последовательная и исчерпывающая интерпретация ДКЭХ все еще остается проблемой, хотя идеи, позволяющие понять природу этого эффекта, были высказаны Р. Лафлиным еще в 1983 г. Сразу было ясно, что эффект обусловлен взаимодействием электронов между собой, поскольку он наблюдается только в ультрасильных магнитных полях, когда область локализации электрона в магнитном поле становится малой, а их плотность становится высокой. Наличие холловского плато при i = 1/3, например, говорит о том, что энергия электронной системы в расчете на одну частицу должна испытать скачок D, когда заполнится точно 1/3 уровня Ландау. Иначе говоря, в спектре энергии электронов при заполнении уровня на 1/3 должна быть щель. Если бы такую щель удалось обнаружить, то дальнейшая интерпретация ДКЭХ практически не отличалась от интерпретации целочисленного аналога.

Поэтому первой была высказана идея, что электроны, стремясь разойтись как можно дальше друг от друга, упорядочатся в некоторую правильную структуру (так называемый вигнеровский кристалл). Но оказалось, что не все так просто. Тщательные вычисления энергии электронной системы в расчете на один электрон в модели вигнеровского кристалла не обнаружили ни каких аномалий при дробных числах заполнения уровня Ландау.

Р. Лафлину, руководствуясь разумными аргументами, удалось сконструировать волновую функцию системы взаимодействующих электронов и показать, что она описывает сильно кореллированную электронную жидкость, в которой расстояние между частицами меняется скачком (квантуется). Эта волновая функция позволяет объяснить возникновение щели в спектре энергии электрона при некоторых дробных заполнениях уровня Ландау.

Теория ДКЭХ еще далека от своего завершения и сейчас, пожалуй, ясны только общие контуры этой новой теории. Возможно, что этот эффект есть первый случай экспериментального наблюдения квазичастиц с дробным электрическим зарядом. По крайней мере, именно такой ортодоксальной точки зрения придерживается Р. Лафлин. Прав Лафлин или нет - покажет будущее, но уже и сейчас совершенно ясно, что эти два эффекта положили конец представлениям о том, что фундаментальные открытия в физике связаны только с физикой высоких энергий, ускорителями и элементарными частицами. За последние двадцать лет настоящего столетия в физике твердого тела сделаны грандиозные открытия, в ряду которых обнаружение высокотемпературной сверхпроводимости, создание туннельного микроскопа, позволяющего увидеть атом, квантовый эффект Холла. Все это позволяет сказать, что передний край в современной физике вновь переместился из области элементарных частиц в область физики конденсированных сред и что именно здесь, где тесно переплетены такие фундаментальные проблемы как существование частиц с дробным зарядом с чисто прикладными, например, созданием национального стандарта электрического сопротивления, можно ожидать новых открытий.

Все нобелевские лауреаты по физике 1998 года работают в американских университетах. Они близки по возрасту. Лафлин родился в 1950 г, Штермер - в 1949 г, Цуи - в 1939 г. Коренным американцем является только родившийся в Калифорнии Лафлин. Штермер родился и учился в Германии, а Цуи родился в Китае, но учился уже в Чикаго. Видимо, проблема "утечки мозгов" существует не только в России.

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://virlib.eunnet.net/

Характеристики

Тип файла
Документ
Размер
547,11 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов статьи

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6376
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее