84945 (763915), страница 2

Файл №763915 84945 (Элементы математической логики) 2 страница84945 (763915) страница 22016-08-02СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Сложным высказыванием называется высказывание, полученное комбинацией элементарных высказываний, логических функций и скобок. Для сложного высказывания также можно составить таблицу истинности. Приведём пример: Составим таблицу истинности для следующего высказывания: (АВ)А

А

В

АВ

(АВ)А

1

1

1

1

1

0

1

1

0

1

1

0

0

0

0

1

Составьте для тренировки таблицы истинности следующих сложных высказываний:

А(АВ)

А(ВА)

(ВА)А

А(ВВ)

(А(ВА))

(ВА)(ВА)

(ВА)(АВ)

В((ВА)(АВ))

Схема умозаключения

Обычно, мы принимаемся строить цепочки логических умозаключений, для того чтобы установить истинность или ложность того или иного утверждения. Можно даже сказать, что нас всегда интересует истинность. Если мы же нам требуется установить ложность утверждения, то это то же самое что устанавливать истинность его отрицания. Иначе говоря, наш мыслительный процесс всегда направлен на получение доказательств теорем каждая из которых строится по следующей схеме: Дано некоторое количество истинных посылок и некоторое утверждение являющееся следствием из них. Теорема говорит, что данное утверждение также истинно, на том основании, что оно является следствием из истинных посылок.

Теорема в общем случае это не обязательно теорема математики. По такой схеме строится и наше бытовое мышление. От математики оно отличается только уровнем строгости. Выше мы уже говорили, что цель математической логики заключается в установлении взаимосвязи между посылками и заключением и теперь пора рассмотреть как это делается.

Для начала определим два важных понятия:

Тождественно истинное высказывание. Это высказывание, которое является истинным при любых значениях составляющих его элементарных высказываний.

Схема умозаключения. Схема умозаключения, это способ получения тождественно-истинных высказываний. Схема утверждает что если высказывание А истинно и истинна импликация АВ, то высказывания В также является истинным (это ясно из определения импликации). Таким образом, если мы найдём способ проверить истинность посылки и импликации, истинность следствия получается автоматически.

Тождественно - истинные высказывания получаются следующим образом: Определяется некоторое количество сложных тождественно - истинных высказываний. Такие высказывания в математике называются аксиомами. Затем составляется очевидная схема умозаключения. Затем над правой частью этой схемы производятся тождественные преобразования приводящие к появлению новых высказываний, которые согласно определению схемы умозаключения также являются истинными.

Нетрудно заметить, что схема умозаключения этой строгая форма дедуктивного метода. Поэтому на примере схемы умозаключения, мы можем показать достоинства и слабости математической логики.

Обычный дедуктивный метод мышления, применим в самых разных ситуациях, чего нельзя сказать о схеме умозаключения математической логики. Она применима только тогда, когда объекты мыслительных операций укладываются в определения понятий математической логики.

С другой стороны, те результаты, которые мы получаем, методами математической логики являются абсолютно точными, в то время как обычный дедуктивный метод, например в бытовой ситуации даёт результат, лишь с некоторой долей уверенности.

Заключение

Наше изложение математической логики было очень кратким, но все же достаточным, чтобы думающий читатель усомнился в её способности вычислять истину. И действительно, такая задача ей не решается, по всей видимости эта задаче неразрешима в принципе, потому что зачастую человеку приходится решать задачи и проблемы, в которых понятия расплывчаты и зачастую нет самого понятия правильного решения. Такова например ситуация в искусстве, в философии и т.д. Однако есть области в которых основные понятия можно определить исключительно точно, и вот там математическая логика и находит своё применение.

Еще несколько вопросов для самостоятельной работы.

Приведите пример дедуктивного рассуждения.

Приведите пример проблемы или задачи, которую невозможно разрешить отказавшись от закона исключенного третьего.

Предположим, вам дана некая математическая задача, как бы вы определили, применимы или нет к ней методы математической логики.

Приведите пример класса задач, не решаемых с помощью метода приведения к противоречию.

Можно ли сказать, доказательство теорем методом от противного есть частный случай метода приведения к противоречию. Ответ обязательно обоснуйте.

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://www.khspu.ru

Характеристики

Тип файла
Документ
Размер
109,43 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов статьи

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7027
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее