12887 (761504), страница 3
Текст из файла (страница 3)
Цель и предмет естествознания.
Также как и у других областей знания у развития естествознания есть присущие ей соответствующие история и логика.
Согласно современному понимаю, естествознание – система естественных наук (физика, химия, биология, геология, астрономия), которые основываются на математическом описании объектов исследования. Естествознание также является одной из трех важных областей знаний о природе, обществе и мышлении; теоретической основой промышленности, сельского хозяйства и медицины; природно-научным фундаментом мировой панорамы. Являясь фундаментом и общей гармонией формирования научной панорамы мира, естествознание для познания явлений и процессов природы разрабатывает систему определенных взглядов и эта система при единой определяющей оценке, как правило, называется концепцией (от лат. consepto). На основе новых открытых эмпирических фактов о природной и социальной системах производятся теоретические обобщения, в результате этого система взглядов о понимании процессов и явлений подвергается соответствующим изменениям и заменяется на новые концепции и парадигмы.
Парадигма – это такой конкретный тип постановки проблемы, при котором он может использоваться в определенный отрезок времени как решение исследуемой проблемы. При знакомстве с областью предмета естествознания в широком масштабе становится ясным, что он содержит в себе материальные субстраты, которые порождают всевозможные в природе формы материи, структурные уровни и их «ступени» материального образования; взаимосвязи этих материальных субстратов, их структуру и генезис.
Картина естествознания постоянно менялась с течением времени. Так, образование всех объективных реальностей, существовавших во Вселенной в VI-IV века до нашей эры, генезис их формирования напрямую относили к «физике». Аристотель людей, занимавшихся проблемами естествознания, называл «физиками» или физиологами. Такое название было неслучайным, это было связано с тем, что оттенки значения самого термина «физика», происходившего от древнегреческого слова, были близки к понятию «природа».
Современное естествознание рассматривает природу не как стоящее в стороне от абстрактной, сознательной деятельности человека, а как объективную реальность, которая реализуется не только посредством конкретных, находящихся под постоянным наблюдением человека познавательных, чисто теоретических умственных комбинаций, но и посредством практической производственной деятельности людей, природа как Вселенная, как универсальность, как необходимое условие для существования и развития человека и общества. Основываясь на том, что природа является отражением сознания человека, естествознание в процессе изменений, которые предпринимаются с целью усовершенствования общества, само совершенствуется. Понимание естествознания в этом контексте помогает выделить его задачи и требования. Цель естествознания – это прежде всего сущность природных явлений, это обнаружение законов и закономерностей, которые регулируют формирование и развитие этих явлений, и, предвидя новые события, которые могут произойти на этой основе, достичь их умственной комбинации.
Во-вторых, это создание реальных возможностей для использования в интересах человека и общества постигнутых законов, силы и вещества природы.
Цели естествознания могут быть близкими и далекими. Так открытие природных законов, реализация их интенсивного и экстенсивного исследования – ближайшая цель естествознания, а практическое использование законов, входящих в систему научного мышления – конечная цель естествознания. Из глубокого и системного изучения целей естествознания, которые полностью совпадают с целями человеческой деятельности, можно сделать вывод о том, что если общество заинтересовано в подготовке высоко профессиональных, достойных специалистов в связи с запросами общества оно рационально использует знания, которыми оно овладело в процессе познания, то в этом случае целью вытекающей из изучения концепций современного естествознания является не просто изучение физики, химии, биологии и др. наук, а в общем открытие скрытых связей явлений физики, химии и биологии. Достичь этой цели можно лишь одним путем – на основе анализа природно-научной информации массового масштаба, которая служит высоким целям образования.
Этапы развития естествознания.
Естествознание в своем развитии прошло 3 этапа:
1) Классический этап естествознания. Этот этап развития естествознания начался приблизительно с XVI – XVII веков и закончился на рубеже XIX – XX веков.
Так называемый классический период естествознания можно разделить на 2 периода: а) период механического естествознания (до 30-х годов XIX века); б) период появления и формирования в естествознании эволюционных идей (с 30-х годов XIX века до начала XX века);
2) Неклассический период развития естествознания (начало XX века до середины XX века);
3) Современный период развития естествознания (вторая половина XX века).
Классический период развития естествознания.
Как мы уже отметили выше классический период развития естествознания прошел 2 периода: классическое естествознание и идеи эволюции.
а) Механическое естествознание.
Начало механического периода развития естествознания совпал с переходом от феодализма к капитализму в социально-экономической жизни Западной Европы. Бурное развитие производительных сил (промышленность, горно-рудное и военное дела, транспорт и т.д.) в этот период требовало решения целого ряда технических проблем, а это в свою очередь требовало интенсивного формирования и быстрого развития естественных наук (физики, химии, биологии, математики). Среди этих наук, специфически решающих технические проблемы, механика приобрела особое значение. На основе познания природы и в условиях еще более глубокого познания практических ценностей научных знаний («наука-сила») быстрыми темпами начинает развиваться механическое естествознание, которое верило в возможность изменения природы.
Развитие механического естествознания, зародившегося в ХVI-XVII веках и связанное с революцией, произведенной двумя глобальными науками, которые заложили начало познания новым способом согласно мировым принципам, можно разделить на 2 ступени:
а) ступень развития механического естествознания до Ньютона;
б) ступень механического естествознания в период жизни Ньютона.
Ступень механического естествознания до ньютона и соответствующая ему первая научная революция происходили в эпоху Возрождения. По своему основному содержанию определяемая гелиоцентрической системой Н.Коперника (1473-1543) общая панорама этой революции так описывалась в труде Коперника «О вращении небесной сферы» : «Солнце словно сидит на троне владыки, управляет миром звезд, вращающихся вокруг него». Подобный взгляд положил конец гелиоцентрической системе Птолемея, которая была основана на многих астрономических наблюдениях и расчетах и была отвергнута Коперником. По своей сути эта идея была первой научной революцией, которая впервые в истории науки разрушила мировую религиозную картину. Хотя Коперник отвергал идеи о Земле как центре мирового устройства и вращении Солнца вокруг Земли, он утверждал о том, что Земное устройство имеет свой предел: Вселенная заканчивается, по его мнению, твердой сферой, поддерживаемой неподвижными звездами.
Датский астроном Тихо Браге и особенно Дж. Бруно, отвергая идею о существовании центра Вселенной, развивали тезис о том, что она бесконечна и в ней существует множество миров как в солнечной системе.
Вторая в истории науки глобальная революция произошла в XVII веке. Эту революцию обычно связывают с именами И.Ньютона, который заложил основу следующей ступени развития механического естествознания (после Ньютона) и который завершил эту революцию, а также с именами Галилея, Кеплера.
В основе научных интересов Г.Галилея (1564-1642), который заложил довольно прочную основу механического естествознания в учении о физике, находилась проблема движения. Заложив основы классической динамики, Галилей, основоположник современного экспериментально-теоретического естествознания, сформулировал принцип относительности движения, идею инерции, закон свободного падения тел. Его открытия в борьбе со схоластическими аристотелевско-птолемейскими традициями обосновывали гелиоцентрическую систему Коперника.
Согласно Галилею в точке выхода познания находится чувственная практика, которая не дает верных знаний об объекте познания. Человеческое чувство может достичь познания посредством мысленного эксперимента, который опирается либо на реальное, либо на математическое описание.
Галилей выдвигал 2 основных метода экспериментального исследования природы:
1. Аналитический метод, который дает возможность спрогнозировать чувственную практику посредством математических способов, абстракций, идеализаций. Посредством этого метода отбираются элементы, которые не поддаются напрямую чувственному восприятию (например, мгновенная скорость), а также трудно описываемые явления.
2. Синтетически-дедуктивный метод, который дает возможность дать интерпретацию явлений на основе количественных отношений и создать схемы теоретического применения, которые подготавливаются в момент их объяснения.
Согласно Галилею достоверные знания о реальности реализуются в форме единства синтетического и аналитического, чувственного и рационального в рамках пояснительной теоретической схемы. Таким образом, отличительная особенность метода Галилея, создание научной эмпирии, резко отличающейся от обыкновенной практики.
Видный физик нашего времени В.Хейзенберг, высоко оценивая методологические принципы Галилея, особо отмечал две характерные особенности его нового метода:
а) выраженное стремление реализовывать точный эксперимент, который каждый раз завершается созданием идеализированных феноменов (объектов);
б) сравнение полученных идеальных феноменов с математическими структурами, принимаемыми как законы природы. На новаторский характер методологических поисков Галилея обратил внимание и Пол Фейерабенд. Он, отмечая наличие так называемого неисчерпаемого материала для методологических соображений в творчестве Галилея, говорил о наличии замены эмпирической практики практикой, которая полна концептуальных элементов. П.Фейерабенд писал по этому поводу следующее: «Галилей нарушил важные правила узаконенного метода логических позитивистов (Карпара, Поппера и др), который был открыт Аристотелем. Галилей только поэтому достиг успеха, что он не следовал этим правилам».
Способ мышления Галилея отталкивался от мысли о том, что без прямого участия ума только посредством познавательных чувств невозможно достигнуть истинного познания природы; для познания природы необходимы ум и сопровождаемые интеллектом чувства. Намного позже, принимая во внимание принцип относительности, А.Энштейн и Л.Инфельд писали: «Открытия Галилея и применяемый им метод научного наблюдения был одним из самых больших достижений в истории человеческой мысли, которое заложило начало физики. Эти открытия учат нас тому, что нельзя все время полагаться только на интуитивные результаты, основанные на наблюдениях; другими словами иногда несут на себе след неправды».
Другой представитель механического естествознания, Иохан Кеплер (1571-1630) открыл три закона движения планет вокруг Солнца:
Первый закон: каждая планета вращается по эллипсу Солнца, который находится в одном их фокусе (по Копернику планета вращается по кругу).
Второй закон: Проведенный от Солнца к планете радиус-вектор за равные промежутки времени очерчивает равные области: с приближением планеты к Солнцу увеличивается скорость ее движения.
Третий закон: Соотношение квадратов периодов вращения планет вокруг Солнца равно соотношению кубов их расстояния до Солнца.
Кроме этих законов Кеплер предложил теорию затмения Солнца и Луны, разработал способы предсказывания этих явлений заранее, установил точное расстояние между Землей и Солнцем. Вместе со всем этим Кеплер не смог объяснить причину вращения планет вокруг солнца, таким образом динамика – физическое учение о силах и о их взаимном влиянии – была создана позднее Ньютоном. Возникновение Теоретического наследия второй научной революции в области классического естествознания стало возможным благодаря очень богатому и разнообразному творчеству И.Ньютона (1643-1727). Намекая на плодотворность своего научного творчества Ньютон писал: «Я стою на плечах гигантов».
Главный труд Ньютона – книга «Математические основы натурфилософии» (1684). За отображение образа Джона Бернали эту книгу назвали «библией новой науки», «источником последующего развития методов, изложенных в Библии». Ньютон в этой книге и в других своих произведениях сформулировал понятие и законы классической механики, открыл формулу закона всемирного тяготения; основываясь на теоретическую сторону законов Кеплера, создал небесную механику и с единой токи зрения объяснил большой объем практических фактов (неравномерность движения Земли, Луны, планет; морские приливы и отливы и др.) Кроме этого Ньютон независимо от немецкого ученого Лейбница создал дифференциальный и интегральный расчеты как адекватный язык математического описания физической реальности. Он также был автором описаний многих физических представлений, в том числе корпускулярных представлений о природе света, атомарной структуры материи, принципа механической причинности и т.д. Как отмечал Эйнштейн, в произведениях Ньютона сделана попытка создать теоретические основы физики и других наук. По свидетельству Эйнштейна, заложенный ньютоном фундамент был очень плодотворным и сумел сохранить ее до конца XIX века.