25746-1 (756283), страница 3
Текст из файла (страница 3)
6.6.1. Нейротрансмиттеры у микроорганизмов. Для создания эволюционно-биологической перспективы для дальнейшего повествования о непосредственном вкладе нейротрансмиттеров в биополитику компактно изложим собственные данные о синтезе нейротрансмиттеров про- и эукариотическими микроорганизмами и об эффектах добавленных нейротрансмиттеров в микробных системах3:
Экспериментальные данные излагаются в работах: Олескин А.В., Кировская Т.А., Ботвинко И.В., Лысак Л.В. Действие серотонина (5-окситриптамина) на рост и дифференциацию микроорганизмов // Микробиология. 1998. Т.67. № 3. С.305-312; Цавкелова Е.А., Ботвинко И.Б., Кудрин В.С., Олескин А.В. Детекция нейромедиаторных аминов у микроорганизмов методом высокоэффективной жидкостной хроматографии // Докл. Росс. Акад. Наук. 2000. Т. 372. С.840—842. См. также обзоры (Олескин и др., 1998, 2000).
Микроорганизмы содержат аминные нейротрансмиттеры. Методом высокоэффективной жидкостной хроматографии с электродетекцией продемонстрировано наличие серотонина в биомассе грамположительных бактерий Bacillus subtilis и Staphylococcus aureusв концентрациях порядка 10 -6 М, сопоставимых с его содержанием в крови млекопитающих (таблица). Катехоламины (норадреналин и дофамин) оказались широко распространены у тестированных прокариот; их концентрации приблизительно соответствуют таковым в крови млекопитающих или даже превышают последние. Экуариоты (дрожжи Saccharomyces cerevisiae и грибок Pennicilum chrysogenum)содержали только норадреналин из числа детектироованных аминных нейротрансмиттеров. У большинства микроорганизмов обнаружены также продукты метаболизма (окислительного дезаминирования) нейротрансмиттеров – 5-гидроксииндолуксусная кислота (5-ГИУК) и дигидрофенилуксусная кислота (ДГФУК). В разделе 5 (5.13) мы упомянули биополимерное покрытие клеток в колонии (матрикс). На примере богатой матриксом бактерии B. subtilis (вариант М) нами продемонстрировано, что нейромедиаторные амины (норадреналин и дофамин) содержатся не внутриклеточно, а в покрывающем клетки матриксе. Данный факт представляет довод в пользу возможной межклеточной коммуникативной роли этих аминов, поскольку слагающие матрикс биополимеры способствуют диффузии низкомолекулярных химических сигналов в пределах колонии. В свете предположения о внутриколониальной коммуникативной функции нейротрансмиттеров они, возможно, служат информационными молекулами ограниченного радиуса действия не только у многоклеточных животных (где они "прицельно" передают информацию от нейрона к нейрону, см. ниже), но и даже у прокариот, ибо матрикс удерживает низкомолекулярные вещества в пределах синтезировавшей их микробной колонии.
| Микроорганизм | Нораденалин | Дофамин | ДГФУК | Серотонин | 5-ОИУК |
| Bacillus cereus | - | 2.13 | 0.69 | 0.85 | 0.95 |
| B. mycoides | 0.32 | 0.25 | 0.81 | - | 0.33 |
| B. subtilis: В целом | 0.25 | 0.36 | - | - | 0.42 |
| - | - | - | - | - | |
| 0.26 | 0.34 | - | - | 0.52 | |
| Staphylococcus aureus | - | 1.35 | 1.54 | 2.2 | - |
| Escherichia coli | - | 1.61 | 2.64 | - | 0.81 |
| Proteus vulgaris | 0.6 | 0.73 | 0.46 | - | 0.4 |
| Pseudomonas aeruginosa, вариант R | - | - | 1.62 | - | 2.7 |
| P. aeruginosa, вариант S | - | - | 3.74 | - | 2.1 |
| Serratia marcescens | 1.87 | 0.6 | 1.47 | - | 0.51 |
| Zoogloea ramigera | - | - | 14.2 | - | 0.34 |
| Дрожжи | 0.21 | - | - | - | 0.26 |
| Penicillum chrysogenum | 21.1 | - | 88.9 | - | 10.8 |
Добавленные нейротрансмиттеры вызывают ростовые и структурные эффекты в микробных системах. Так, мы показали, что серотонин (Рис. 14) в микромолярных концентрациях (0,1—25 мкМ), стимулируют рост кишечной палочки Escherichia coli, пурпурной бактерии Rhodospirillum rubrum4 В тех же концентрациях серотонин меняет макро- и микроструктуру колоний – стимулирует агрегацию микробных клеток (образование их скоплений) и формирование межклеточного матрикса (Рис. 15). В более высоких концентрациях (25-50 мкМ и выше) серотонин оказывает противоположное влияние – частично подавляет рост микроорганизмов и агрегацию их клеток с матриксообразованием. Стимуляция роста микробных культур наблюдали также в присутствии дофамина, но не норадреналина (не показано). Эффекты микромолярных концентраций серотонина и дофамина нами интерпретируются в рамках предположения о сигнальной роли этих агентов, что согласуется с приведенными выше данными об их эндогенном синтезе. По их концентрации клетки могут оценивать плотность собственной популяции и активно расти, если эта плотность выше определенного порога (гипотеза кворум-зависимого действия нейротрансмиттеров, по аналогии с данными литературы об эффектах других коммуникативных факторов, см. обзор Олескин и др., 2000). Для выяснения конкретных механизмов действия нейромедиаторов в микробных системах(предположительно зависимых от рецепторов в мембранах) в настоящее время наша лаборатория исследует их эффекты на мембранный потенциал, скорость дыхательного транспорта элеткронов и другие параметры микробных мембранных систем.
Стимуляция серотонином роста бактерии Enterocococcus faecalis и дрожжей Candida guillermondii устаноывлена в работах другой лаборатории. См. Страховская М.Г., Иванова Е.В., Фрайкин Г.Я. Стимулирующее влияние серотонина на рост дрожжей Candida guillermondii и бактерий Streptococcus faecalis //Микробиология. 1993. Т.62. С.46-49.
Полученные данные в о роли нейротрансмиттеров серотонина, норадреналина и дофамина в микробных системах представляют интерес не только как яркая иллюстрация эволюционно-консервативного характера этих сигнальных молекул. Известно, что митохондрии эукариотических клеток – симбиотические потомки прокариот, а именно, той их подгруппы, в состав которой входит E. coli и R.rubrum. Поэтому исследования бактериальных рецепторов к нейромедиаторам и в целом эффектов эволюционно-консервативных нейромедиаторов в микробных системах актуальны для нейрохимии мозга в связи с данными о роли митохондрий мозговых нейронов в связывании нейромедиаторов. Избыточное связывание нейротрансмиттеров рецепторами митохондриальных мембран нейронов мозга – важная предпосылка ряда мозговых заболеваний (инсульт, болезнь Альцгеймера и др.)5. Что касается конкретно серотонина, то он представляется в свете изложенных фактов эволюционно консервативным "гормоном социальности", побуждающим клетки и целые многоклеточные организмы вступать во взаимодействие друг с другом, формировать социальные структуры (Masters, 1994). Отметим в порядке сопоставления, что серотонин вызывает агрегацию также тромбоцитов крови млекопитающих. От эволюционно-биологической перспективы с включением данных о нейромедиаторах в микробных системах перейдем к их специфической роли в нервной системе высших животных и человека.
Montal M. Mitochondria, glutamate neurotoxicity and the death cascade // Biochim. Biophys. Acta. 1998. V.1366. P.113-126
6.6.2. Нейротрансмиттеры и нейромодуляторы. Нейротрансмиттеры (нейромедиаторы) необходимы для передачи информации от нейрона к нейрону (или между нейронами и сенсорными клетками или клетками мышцы/железы). Интересно, что за перенос информации между двумя нейронами через разделяющих их синапс могут отвечать сразу несколько нейротрансмиттеров. В этом факте усматривают еще один пример параллельного действия модулей мозга – в данном случае нейротрансмиттерных систем. Говорят о своеобразной "мозговой демократии", позволяющей мозгу частично скомпенсировать дефицит одного нейротрансмиттера за счет использования другого (Харт, 1998).
Среди многих сотен обнаруженных нейротрансмиттеров, наиболее важными представляются следующие группы: (1) аминокислоты: глутаминовая кислота, аспрагиновая кислота глицин, гамма-аминомасляная кислота (ГАМК); (2) моноаминовые нейротрансмиттеры: серотонин, ацетилхолин, катехоламины (адреналин, норадреналин, дофамин); (3) летучие неорганические нейротрансмиттеры исследуемые в последние годы, особенно окись азота (NO); (4) пептиды (например, вещество Р); многие из пептидов, впрочем, чаще играют не непосредственно нейротрансмиттерную, а нейромодуляторную роль — повышают или понижают эффективность переноса информации через синапс, обслуживаемый другим нейротрансмиттером. Нейромодуляторная роль характерна для эндорфинов и энкефалинов.
Каждый из нейротрансмиттеров характерен для определенной группы нейронов (кластеров или цепочек). Дофамин, например, присущ группам нервных клеток в некоторых районах среднего мозга; норадреналин — небольшому кластеру в варолиевом мосту – синему пятну, участвующему в регуляции сна со сновидениями (см. 6.5.2), а также прилежащим к нему участкам среднего мозга. Cеротонин выделяется нейронами ядер шва в стволе мозга; аксоны (длинные отростки) этих нервных клеток находятся в различных зонах неокортекса и лимбической системы. Много серотонина содержится в эпифизе, или шишковидной железе (рудименте третьего глаза, функционирующего до сих пор у пресмыкающегося гаттерии). Здесь серотонин превращается в мелатонин. Мелатонин совместно с серотонином регулирует цикл сна и бодрстовования. В частности, мелатонин вырабатывается в темноте и способствует сонливости и засыпанию человека в темное время суток. Ацетилхолин транспортирует информацию не только от нейрона к нейрону, но и от нейрона к мышечной клетке (действие яда кураре основано на предотвращении переноса команды с нейрона на мускульную клетку при участии ацетилхолина).
Уровень нейротрансмиттеров в значительной мере определяет поведенческие возможности животного или человека, тонус, настроение и др. Ацетилхолин важен для первоначального запоминания новой информации и последующих процессов консолидации памяти (придания ей устойчивого долговременного характера). Нехватка дофамина в сответствующих участках мозга ведет к потере инициативы (к "сидению и мечтанию"), более серьезный дефицит — к полной невозможности совершить активное действие; дальнейшее развитие этого состояния может вести к синдрому Паркинсона. Избыток дофамина способствует поведению, связанному с "поиском наслаждений" (гедонистическое поведение) – от вкусной еды6 до интересного видеофильма, но слишком существенный избыток этого нейротрансмиттеров рассматривается, по одной из гипотез, как причина шизофрении (Харт, 1998).
Крыса независимо от уровня дофамина в мозгу отличает вкусный сладкий сахар от горького порошка хинина, но стремление к вкусному "блюду" у нее возрастает по мере повышения уровня этого нейротрансмиттера. См. Berridge K.C., Robinson T.E. What is the role of dopamine in reward: hedonic impact, reward learning or incentive salience? //Brain Res.: Brain Res. Rev. 1998. V.28. N 3. P.309—369.
Особое биополитическое звучание имеют исследования эффектов серотонина, так как опыты М.Т. МакГвайера и других ученых показали его роль в определении социального статуса и упорядочении ранговой иерархии у столь различных существ как сверчки, омары и обезьяны. Установлено, что более высокие уровни серотонина соответствуют более высокому рангу в иерархии (McGuire, 1982; Masters, 1994; Raleigh, McGuire, 1994). Так, доминант в группе зеленых мартышек-верветок имеет больше серотонина в сыворотке крови и прдукта переработки серотонина 5-гидроксииндоуксусной кислоты в спинномозговой жидкости, нежели подчиненные особи.
Изменение социальной ситуации меняет уровни серотонина (и других нейротрансмиттеров) у соответствующих индивидов. Отсаживание доминанта в отдельную клетку, так что он теряет контакт с подчиненными и не видит их сигналов повиновения, ведет к постепенному снижению серотонина до уровня, свойственного недоминирующим обезьянам (Raleigh, McGuire, 1994). Высокий уровень серотонина, характерный для доминанта, коррелирует с пониженной агрессивностью и более частыми актами неагонистического, лояльного поведения у доминанта по сравнению с недоминирующими особями. Например, доминант занят примирением конфликтующих особей. Иерархия доминирования у верветок в основном относится не к агонистическому, а к гедонистическому, основанному на повышенном интересе к доминанту, типе (см. 5.14.2 выше).
Данные Мадсена (Madsen, 1994; см. также Masters, 1994) о роли серотонина у Homo sapiens выявили более сложную картину: (1) у людей с "маккиавелиевским типом личности" (агрессивных, властолюбивых, целеустремленных, аморальных) социальный ранг нарастает по мере повышения уровня серотонина в крови; (2) у людей противоположного типа личности - "уступчивых моралистов" социальный ранг убывает по мере повышения уровня серотонина. Одно из возможных объяснений — серотонин (при его достаточном уровне) проявляет истинный тип личности человека, он становится "самим собой", как говорил тролль в "Пер Гюнте" Ибсена.















