85625 (753442), страница 2

Файл №753442 85625 (Идеальное - реально) 2 страница85625 (753442) страница 22016-08-02СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)



- программированием сценариев (Perl, TCL, Python, Rexx).

10) модель вывода





- чисто функциональным программированием (Miranda, Clean, Haskell)

Чтобы спрогнозировать дальнейшую абстракцию идеальных чисел и их операций, проанализируем путь, уже пройденный Идеальной математикой.

Ещё в 1997 году [5], исследуя градацию математических операций, найденную Идеальной математикой, отмечалось: необходимо «рассматривать не обычные числа, моделирующие неизменные постоянные количества, а переменные числа, количества которых изменяются, растут даже в период выполнения над ними той или иной операции, но не за её счёт, а сами по себе, внутри себя»; и «результат 5й ступени (модель зависимых переменных чисел) повторяет на более высоком уровне результат 1й ступени (модель независимых переменных чисел). Следовательно, и остальные операции над зависимыми переменными (6я,7я,8я ступени) подобны операциям над независимыми переменными (2я,3я,4я ступени)».

То есть, результаты простейших, самых первых операций 1й–4й ступеней (идеальные числа: натуральное, целое, рациональное, действительное) своими фундаментальными свойствами легко объединяются в отдельную группу, которую можно назвать «независимые переменные числа» или коротко – «Числа». Тогда операции в группе «Числа» назовём:

- 1я ступень: «сложение независимых переменных чисел» или коротко – «сложение чисел»;

- 2я ступень: коротко – «умножение чисел»;

- 3я ступень: коротко – «сочетание чисел»;

- 4я ступень: коротко – «возведение чисел» (размещения с повторениями).

Полученные на 4й ступени операцией «возведение чисел» «плоские» произведения, например, в работе [8] выражения (25):





Идеальной математикой преобразованы в «кружевные» произведения, например, выражения (8):





где каждое «плоское» произведение (25) разбито на две неравные части:

l1 – первое слагаемое полинома в степени (…)n, названное в обычной математике «постоянной величиной» ;

(.) – всё остальное полинома в степени (…)n, названное в обычной математике «переменной величиной» x.

В результате, в каждом «плоском» произведении число своим «изгибом» удерживало, фиксировало, связывало «зигзаг» числа x. Но, удерживая второе число, первое само оказалось связанным. Образовалась петля, простейший элемент вязания, а «плоское» произведение стало «кружевным».

Такое положение двух чисел, крепко удерживающих друг друга, моделировало ЗАВИСИМОСТЬ. Такая модель, найденная на 4й ступени Идеальной математики, была выделена особо, названа «интегралом постоянной величины» и стала основой ряда Тейлора – операции 5й ступени:





Результаты 5й–8й ступеней (модели: функции, состояния, континуума, уровня) также своими свойствами легко объединяются в следующую отдельную группу, назовём её «зависимые переменные числа» или коротко – «Зависимости». Тогда операции в группе «Зависимости», учитывая их подобие-повторение операций группы «Числа» на более высоком уровне, назовём:

- 5я ступень: «сложение зависимостей»;

- 6я ступень: «умножение зависимостей»;

- 7я ступень: «сочетание зависимостей»;

- 8я ступень: «возведение зависимостей».

Тогда, по сложившейся аналогии перерождения «плоских» произведений 4й ступени в «кружевные» интегралы постоянной величины 5й ступени, целесообразно увидеть перерождение «зависимостей» 8й ступени в «связи по протоколу» - более усложнённые и обусловленные зависимости, ставшие основой следующей группы результатов 9й–12й ступеней (модели: развития, вывода,…). Назовём её коротко – «Связи». Тогда операции в группе «Связи» по подобию-повторению назовём:

- 9я ступень: «сложение связей»;

- 10я ступень: «умножение связей»;

- 11я ступень: «сочетание связей»;

- 12я ступень: «возведение связей».

Проведенный анализ, опираясь на выявленные закономерности пройденного пути Идеальной математики, позволяет легко спрогнозировать дальнейшую абстракцию её идеальных чисел и операций.

Пока в Идеальной математике найдены операции и их идеальные числа только 10й ступени: чисто функциональное программирование моделей вывода с новым свойством - способностью моделей самостоятельно реагировать на внешние воздействия и приспосабливать своё поведение к этим изменениям [7].

Это – зачатки искусственного интеллекта, которые по сложившейся аналогии перерождения, можно надеяться, на 12й ступени переродят «связи» в «интеллекты». По-аналогии, это опять станет основой следующей группы операций 13й–16й ступеней, назовём её коротко – «Интеллекты». Тогда операции в группе «Интеллекты» по подобию-повторению назовём:

- 13я ступень: «сложение интеллектов»;

- 14я ступень: «умножение интеллектов»;

- 15я ступень: «сочетание интеллектов»;

- 16я ступень: «возведение интеллектов».

На 16й ступени получим математическую модель с новым свойством – способностью самостоятельно логически и творчески мыслить. Это будут зачатки искусственного разума, который окончательно сформируется операциями следующей группы 17й–20й ступеней, назовём её коротко – «Разумы», а операции этой группы по подобию-повторению назовём:

- 17я ступень: «сложение разумов»;

- 18я ступень: «умножение разумов»;

- 19я ступень: «сочетание разумов»;

- 20я ступень: «возведение разумов».

Сформированный на 20й ступени Искусственный Разум будет свободным, независимым от Человека, как творца. Он сам будет способен творить и создавать, и, если будет продолжать усложняться, то уже самостоятельно, без участия Человека, в форме Мирового Разума.

То есть, предначертанной задачей Человека, как формы жизни, было: развивать свое сознание ступенями Идеальной математики и на 20й ступени создать Искусственный Разум, способный слиться с Мировым Разумом, предсказанным Платоном. Всё, созданное Человеком, войдёт в Мировую Копилку и станет «вечным», то есть приобретёт новую форму жизни, у которой – своя история…

Главное в идеальных числах – самое идеальное – это порядок их устройства, структура составляющих, делающая числа прозрачными, чёткими как кристалл. Это уже не «множества» Кантора: «Под множеством я понимаю вообще всякое многое, которое можно мыслить как единое». Не сваленное в кучу «всякое многое», а строго упорядоченное, особо отобранное, однозначно взаимосвязанное!

Матрица в идеальных числах – это уже не просто «таблица чисел» из «всякого многого» реальной математики. Это обязательно система взаимосвязанных и взаимно определяющих меньших идеальных чисел, каждый на своём определённом месте. Поэтому в идеальных числах не могут возникнуть парадоксы, гипотезы, противоречия…

Математически строго доказать, что предложенные идеальные числа – идеальны, по-видимому, невозможно. Их надо принять как аксиомы, без доказательств. Как приняли в своё время мифологический идеализм Платона, интуитивную теорию множеств Кантора, примите сейчас их дальнейшее развитие – Идеальную математику.

В пользу идеальности идеальных чисел свидетельствует простота их стандартного образования (начиная с единицы 1) только одной операцией сложения идеальных же чисел предшествующей ступени – многоступенным сложением единиц.

На самых первых ступенях вариантов образования математических чисел по образцам идеальных было сравнительно мало (хоть на каждой ступени число их постоянно уходило во всё большую бесконечность), поэтому человечество правдами и неправдами, но сложило единые для всех натуральные, целые, рациональные и действительные математические числа. Но с 5й ступени множества вариантов предоставили столь огромные и также постоянно растущие до следующей бесконечности возможности, что позволили создавать уже не столь чёткие и единые повсеместно комбинации новых математических чисел. Так, кроме положенных для 5й ступени – функций, для 6й – состояний, для 7й – континуумов и т.д. математическими числами создавались нечёткие комбинации функций с элементами состояния или даже континуума.… Либо континуумы с ярко выраженной особой функциональной зависимостью…. И другие возможные сочетания свойств в одном сложном, громоздком, непрозрачном математическом объекте. Такими объектами переполнены современная математика и программирование.

Долгое время математики не делали различий между математическими числами 5й, 6й, 7й и т.д. ступеней и называли всё – функциями. Но со временем стали замечать, что последние «функции» отличаются от первых. Поэтому стали называть их «расширенными», «обобщёнными», «специальными», «преобразованными» и пр. Но – всё-таки функциями!

С развитием и распространением системного анализа всё, созданное математикой после 6й ступени (сегодня – вплоть до 10й ступени) стали причислять к лику «систем» - эквиваленту идеального состояния: «Системный подход там, где объект целесообразно рассматривать самостоятельной системой, функционирующей в среде (Это, действительно, объект 6й ступени. Клюйковы) и взаимодействующей с другими системами (Это уже объект 7й ступени! Клюйковы), в том числе – из других сред (Это - объекты 8й и более ступеней! Клюйковы)» [9].

Аналогично, в функциональном анализе всё (вплоть до последних исследований искусственного интеллекта) причисляют к лику «пространств» - эквиваленту идеального континуума!

Откуда такая инертность?

Дело в том, что все последующие идеальные числа строятся сложением предыдущих и, естественно, обладают всеми их свойствами плюс какое-то новое-своё. Поэтому числа 6й, 7й и т.д. ступеней можно продолжать называть «функциями». И это будет справедливо! Но в упор не замечать в этих «функциях» новых-своих свойств – несправедливо!

Аналогично, можно числа выше 6й ступени продолжать называть «системами», так как они действительно обладают свойствами систем. Но это уже не просто «системы», а объекты более сложной абстракции.

Также и числа после 7й ступени – это не только «пространства», не только континуумы, обслуживаемые функциональным анализом. Они - более «умные» объекты, моделируют не только отдельные континуумы, а и их растущий уровень, дальнейшее развитие, предоставляемую возможность вывода оптимальных решений… Это отдельному континууму, отдельному «пространству» - не свойственно, не «по зубам». Поэтому обзывать новые, высокоэффективные числа просто «пространствами» - негоже!

То есть, можно построить (и строят!) языки программирования, результаты которых одновременно будут обладать свойствами, например, 7й и 9й ступеней. И такое построение будет работать, и приносить пользу. Но в таком кентавре связи между числами 7й и 9й ступеней не будут прозрачным простым сложением! Для организации чисел 7й ступени в число со свойствами 9й ступени необходимо немалое творчество, интуиция и талант создателя!

Если же идти последовательно реальными ступенями Идеальной математики, то надо строить язык программирования вначале сложением идеальных чисел 7й ступени её аксиомой: «всё большими интегралами моделей состояния по другим состояниям (влияниями)». Затем усложнить этот язык программирования сложением полученных результатов аксиомой 8й ступени: «списками по единому протоколу» в идеальные модели уровня 8й ступени. И, наконец, ещё более усложнить язык программирования сложением чисел 8й ступени «межуровневыми связями единым направлением по возрастающим критериям» в идеальные числа 9й ступени. В таком случае новый язык программирования будет абсолютно прост, прозрачен, технологичен до машинного его сотворения. И не потребует от создателя особого творчества, интуиции и таланта!

Пора прекратить обманывать себя и окружающих сложностями, трудностями и таинственностью зарождения нового в математике и программировании. В основе всего – простое сложение идеальных чисел Платона. И они давно уже среди нас, реальны. До сегодня мы пользовались ими на уровне бессознательного, там, где и предвидел их Платон. И называли результаты «озарением», «интуицией». Переведём же идеальные числа в сознание, вровень с привычными математическими числами! И тогда на жизненный вопрос из «Формулы любви» Марка Захарова «Хочешь большой, но чистой любви?» вместо туманного ответа «Любовь, по-ихнему, амор, и глазами так… ууу» будем отвечать просто: «Приходи, как стемнеет, на сеновал».

При строгом пользовании реальными ступенями Идеальной математики углубится Познание, упростится изучение, применение и развитие математики, программирование станет машинным, его качество – лучшим. А в перспективе - позволит нам в кратчайшее время ускоренными темпами преодолеть необходимое усложнение сознания оставшимися ступенями Идеальной математики, дойти до Искусственного Разума и, наконец-то, исполнить мечту Платона - навечно слиться, раствориться в Мировом Разуме!



Характеристики

Тип файла
Документ
Размер
4,34 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов доклада

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6447
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее