85222 (753406), страница 2
Текст из файла (страница 2)
4. Постоянная тонкой структурыα(α=7,297352533(27)•10-3)
5. Числоπ(π=3,141592653589)
Константы этой группы позволили выявить совершеннонеожиданную всеобщую взаимозависимость и глубокую взаимную связь всехфундаментальных физических констант. Ниже, вкачестве примера, показано как некоторыефундаментальные постоянные связаны суниверсальными суперконстантами. Для основныхконстант эти функциональные зависимости оказались следующими:
-элементарный зарядe: e=f(ħu,lu,tu);
-масса электрона me: me=f(ħu,lu,tu);
-постоянная Ридберга R∞: R∞=f(lu,α,π);
-гравитационная постояннаяG: G=f(ħu,lu,tu,α,π);
-отношение масс протона-электрона mp/me: mp/me=f(α,π);
-постоянная Хаббла H: H=f(tu,α,π);
-планковская масса mpl: mpl=f(ħu,lu,tu,α,π);
-планковская длина lpl:lpl=f(lu,α,π);
планковское время tpl: tpl=f(tu,α, π);
-квант магнитного потокаФo:Фo=f(ħu,lu,tu,α,π);
-магнетон Бора μB: μB=f(ħu,lu,tu,α,).
Как видим, между физическими константами существуетглобальная связь на фундаментальном уровне. Из приведенных зависимостей видно,что наименее сложными являются константыh,c, R∞,mp/me. Это указывает на то, что постоянныеh,c, R∞,mp/meнаиболее близки к первичнымконстантам, однако сами таковыми не являются. Как видим, константы, которыетрадиционно носят статус фундаментальных констант, не являются первичными инезависимыми постоянными. К первичным и независимым можно отнести толькосуперконстанты вакуума. Подтверждением этому явилось то, что использованиесуперконстантного базиса позволило получить все основные фундаментальныефизические константы расчетным путем [5-15]. То, что известные сегодня фундаментальные физические константы не имеют статусапервичных и независимых постоянных, а на их основе пытались построить физическиетеории, и явилось причиной многих проблем физики. Фундаментальные теорииневозможно построить на вторичных константах.
Размерные суперконстантыhu, lu,tu определяют физическиесвойства пространства-времени. Суперконстантыπиαопределяют геометрические свойства пространства-времени. Таким образом, подтверждается подход А.Пуанкаре,согласно которому утверждается дополнительность физики и геометрии [16].Согласно этому подходу в реальных экспериментах мы всегда наблюдаем некую“сумму” физики и геометрии [17].Группа универсальных суперконстант своимсоставом подтверждает это.
4. НОВОЕ ЗНАЧЕНИЕ КОНСТАНТЫ G
Зависимость константыGот первичных суперконстантуказывает на то, что эту важнейшую постоянную можно получить математическимрасчетом. Как известно, сама форма закона всемирного тяготения Ньютона –пропорциональность силы массам и обратнаяпропорциональность квадрату расстояния, проверена с гораздо большей точностью,чем точность определения гравитационной постояннойG. Поэтому,основное ограничение на точное определение гравитационных сил накладывает константа G. Кроме того, с времен Ньютонаостается открытым вопрос о природе гравитации и о сущности самой гравитационнойпостояннойG. Эта константа определена экспериментально. Науке пока неизвестносуществует ли аналитическое соотношение дляопределения гравитационной константы. Науке также не была известна связь между постояннойGидругими фундаментальными физическими константами. В теоретической физике этуважнейшую постоянную пытаются использовать совместно с постоянной Планка искоростью света для создания квантовой теориигравитации и для разработки единых теорий. Поэтому, вопросы о первичности и независимости константыG,атакже необходимость знать ее точное значение, выходят на первый план.
Численное значениеGбыло определено впервые английским физикомГ.Кавендишем в 1798 г. на крутильных весах путем измерения силы притяжения междудвумя шарами .
Современное значение константыG,рекомендуемое CODATA 1998[1]:
G=6,673(10)•10-11m3kg-1s-2.
Из всех универсальных физическихпостоянных точность в определенииGявляется самой низкой. Среднеквадратическая погрешность дляGнанесколько порядков превышает погрешность другихконстант.
Совершенно неожиданным оказалось то, что константаGможет быть выражена посредствомэлектромагнитных констант. Это становится важным, так как точность константэлектромагнетизма намного больше точности постояннойG.
Открытая группа универсальных суперконстант, имеющих первичный статус, ивыявленная глобальная связь фундаментальных констант позволили получитьматематические формулы для вычисления гравитационной постояннойG[6, 9, 10,15]. Таких формул оказалосьнесколько. В качестве подтверждения этому, ниже приведены 9 эквивалентных формул для вычисленияG:
G=2πc3lu2/αhDo, G=c5tpl2α/hu, G=lu3/tu2meDo, G=huα2/4πtumpl2R∞,
G=c3lpl2α/hu, G=2lu5α H/tu2hu, G=huc/α mpl2, G=c4lu/EeDo.
G=hulu/tume2Do
Из приведенных формул видно, что константаG выражается с помощью других фундаментальных константочень компактными и красивыми соотношениями. При этом, все формулы длягравитационной константы сохраняют когерентность. В числе физических постоянных,с помощью которых представлена гравитационная константа, находятся такие константы как фундаментальный квантhu,скорость светаc,постоянная тонкой структурыα,постоянная Планкаh, числоπ, фундаментальная метрика пространства-времени(lu,tu),элементарная массаme,элементарный зарядe,большое число ДиракаDo, энергия покоя электронаEe,планковскиеединицы длиныlpl,массы mpl,времениtpl, постоянная ХабблаH, константа РидбергаR∞. Это указывает на единую сущностьэлектромагнетизма и гравитации и на наличие фундаментального единства у всехфизических констант. Из приведенных формул видно, что связь междуэлектромагнетизмом и гравитацией действительносуществует и проявляется даже на уровне гравитационной константыG.
Поскольку точность в определении констант электромагнетизма высокая, тоточность гравитационной постоянной можно приблизить к точности электромагнитных констант. Все приведенные вышеформулы дают одно и то же новое значениеG, которое по точности почти напять порядков (!) выше известного на сегодня значения. Новое значениеGвместо четырех цифр содержит 9цифр[6, 9, 10, 15]:
G=6,67286742(94)•10-11m3kg-1s-2.
С помощью универсальных суперконстант удалось получить новые формулы дляпланковских констант[6, 8, 9, 15]:
mpl= hutu/lu2(Do/α)1/2, lpl=lu(1/Doα )1/2, tpl=tu(1/Doα )1/2.
На основе этих формул полученыновые значения планковскихконстант:
mpl=2,17666772(25) •10-8кг,
lpl =1,616081388(51) •10-35м,
tpl =5,39066726(17) •10-44с.
Эти новые значения планковских констант по точности почти на пять порядковточнее известных на сегодня значений[1].
Универсальные суперконстанты позволили получить новое точное значениепараметра Хаббла:
H= 53,98561(87)(км/с)/Mпс.
5. ФУНДАМЕНТАЛЬНАЯ КОНСТАНТА СИЛЫ
Особенности констант физического вакуума привели к выводу, что силывзаимодействия также должны выражаться через константы вакуума. Покажем это. Иззакона Кулона для взаимодействующих элементарных зарядов следует:
F = e2/l2 ,
На основании формулы (8) представим этосоотношение следующим образом:
F = huc / l2= huν2/ c.
Значениеhu/c с учетомформулы (3) будет равно Gu. Исходя из этого, получимсоотношение для закона универсальноговзаимодействия[5-15]:
F = Guν2 .
Для предельного значения метрики из закона универсального взаимодействияполучим следующее соотношение для константы силы:
Fu = hu /lutu
Эта новаяфизическая константа названа ФУНДАМЕНТАЛЬНОЙ КОНСТАНТОЙ СИЛЫ. Ее значение равно:
????
Она является универсальной константой силы для всех известных на сегоднявидов взаимодействий. Как показано в[6, 9,10,13], эта константаприсутствует не только в законе Кулона, но и в законах Ньютона, в законеГалилея, в законе Ампера и в законе всемирноготяготения.
6. УНИВЕРСАЛЬНАЯ ФОРМУЛА СИЛЫ
Поиск единого взаимодействия, сводящего воедино четыре фундаментальныхвзаимодействия, - одна из сложнейших нерешенных задач физики. Современныепопытки объединения сильного, слабого, электромагнитного и гравитационноговзаимодействий основаны на поиске условий, при которых константы взаимодействийсовпадают по своим величинам. Считается, если существует такая единая константа,то объединение взаимодействий возможно. Однако такой подход пока не привел кобнадеживающим результатам. Не раскрыта взаимосвязь четырех фундаментальныхвзаимодействий, не ясны истоки их появления.
Я считаю, что решение проблемы единого взаимодействия нужно искать на другомнаправлении.
Вместо поиска условий, при которых константы взаимодействий могут совпадать,целесообразно исследовать генезис фундаментальных взаимодействий и вестипоиск новой константы единоговзаимодействия. Есть все основания полагать, что такая константа существует.Единство фундаментальных физических констант указывает на существование единствау электромагнитных и гравитационных сил. Вчастности, к решению этой проблемы можетподтолкнуть выяснение следующего вопроса. Почему так схожи по своему видуформулы законов Кулона и всемирного тяготения Ньютона? Столь разныевзаимодействия оказались такими похожими в математическом представлении формулысилы. В одном - заряды, в другом - массы, но формулы одинаковы. Что скрываетсяза этим поразительным сходством? Есть несколько путей решения этой проблемы.Первый путь состоит в том, чтобы выяснить какая существует связь междумассой и зарядом. Практически это означает, чтонеобходимо вести поиск ответа на вопрос:существует ли электромагнитная масса и что это такое? Второй путь состоит в выяснении сущностигравитационной константыG. Возможно, что и в ней скрыта связьмежду электричеством и гравитацией. Третий путь основан на предположении о том,что и закон Кулона, и закон Ньютона являютсяфрагментами какого-то универсальногофундаментального закона силы. Если это сходство не случайно, то долженсуществовать единый закон силы, который лишь проявляется для электричества какзакон Кулона, а для гравитации - как закон Ньютона. Как показано в[6, 9,10, 15] единый закон силы действительно существует. Закон Кулона и законыНьютона действительно являются его частными проявлениями. Используяуниверсальные суперконстанты, у наспредставилась возможность не просто выявить сходство в форме записи у этихзаконов, а установить их связь нафундаментальном уровне. На основе суперконстант удалось получить новую формулусилы, которая названауниверсальнойформулой силы[6, 10, 15]. Она имеет следующий вид: