183965 (743658), страница 2

Файл №743658 183965 (Информационные технологии решения задач векторной оптимизации) 2 страница183965 (743658) страница 22016-08-02СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Ситуация равновесия может оказаться не единственной.

Ситуации равновесия часто оказываются в разной степени предпочтительными для различных сторон. Иначе говоря, показатели эффективности решений сторон имеют неодинаковые значения в различных равновесных ситуациях. В связи с этим какая-то равновесная ситуация, выгодная для одной стороны, может оказываться невыгодной для других. Поэтому решение -й стороны, соответствующее какой-либо равновесной ситуации, не следует трактовать как оптимальное для этой стороны. Равновесность как принцип оптимальности имеет смысл только для набора равновесных решений всех сторон.

Ситуации равновесия могут совпадать или не совпадать с ситуациями оптимальными по Парето.

Конфликты, переговоры и компромиссы

Решения сторон (участников конфликтной ситуации) могут быть выгодными для всех (решения, оптимальные по Парето), но неустойчивыми, или устойчивыми (равновесными по Нэшу), но не обязательно наилучшими, характеризующимися наибольшими значениями показателей эффективности. При этом неустойчивость ситуаций, оптимальных по Парето, означает, что выход из этой ситуации любого из участников может оказаться выгодным для него. Устойчивость равновесной по Нэшу ситуации означает, что индивидуальный (в одиночку) выход из нее невыгоден стороне, решившейся на это.

Ситуации, оптимальные по Парето, эквивалентны для всей совокупности участников конфликта. Поэтому выбор какой-то одной ситуации из множества оптимальных по Парето должен осуществляться путем проведения соответствующих переговоров между сторонами и представляет собой компромиссное решение этих сторон. Но и о выборе решений, соответствующих тем или иным равновесным ситуациям, стороны должны предварительно договориться, так как эффективность этих решений неодинакова для различных сторон.

Таким образом, переговорный процесс, направленный на выработку компромиссных соглашений, является существенным фактором разрешения конфликтных ситуаций. В ходе переговоров могут определяться не только решения, но и процедуры, правила поведения, позволяющие отыскать решения, приемлемые для всех сторон.

Для обеспечения устойчивости ситуаций может применяться, например, образование коалиций, что обусловлено следующим. При выработке соглашения между сторонами о выборе решений, соответствующих равновесию по Нэшу, учитывается позиция каждой стороны. В отличие от этого Парето-оптимальные решения определяются общим интересом всех сторон. Естественно, возможны промежуточные случаи, когда несколько сторон объединяются в одну коалицию. При этом коалиционные результаты оказываются лучшими, чем индивидуальные (иначе образование коалиций не имело бы смысла). Число образуемых в некоторых случаях коалиций может оказываться достаточно большим.

Эффективным способом обеспечения устойчивых Парето-оптимальных соглашений является выработка специальных процедур ведения переговоров по выбору решений, базирующихся на расширении взаимной информированности сторон об их решениях и намерениях.

Помимо расширения информированности сторон имеются и другие пути стабилизации возможных исходов, определяемые конкретными особенностями конфликтных ситуаций. Однако наличие множества неравнозначных для различных сторон вариантов затрудняет поиск компромисса, так как каждая сторона стремится отстаивать наиболее выгодный для себя вариант. В связи с этим возникают новые проблемы, требующие решения. В качестве примера можно привести борьбу “за первый ход”. Не исключена также возможность дезинформирующих действий участников переговоров, а также опасность срыва переговорного процесса и т.д.

Краткий обзор методов решения задачи векторной оптимизации

Решение задачи векторной оптимизации представляет собой сложный процесс, в ходе которого могут применяться различные расчетные схемы и алгоритмы. Перечислим некоторые из наиболее употребительных:

Методы, основанные на свертывании системы показателей эффективности;

Методы, использующие ограничения на критерии;

Методы целевого программирования;

Методы, основанные на отыскании компромиссного решения;

Методы, в основе которых лежат человеко-машинные процедуры принятия решений (интерактивное программирование).

Для ряда из вышеперечисленных методов вводится понятие функции предпочтения (полезности). С помощью функции предпочтения проблема сравнения совокупности чисел-значений, принимаемых показателями эффективности, сводится к сравнению чисел-значений, принимаемых функцией предпочтения. При этом ЛПР считает, что один набор значений локальных критериев предпочтительнее другого, если ему соответствует большее значение функции предпочтения. Кратко охарактеризуем упомянутые методы векторной оптимизации.

А. В методах, основанных на свертывании системы показателей эффективности, из локальных критериев формируется один. Наиболее распространенным является метод линейной комбинации локальных (частных) критериев.

Пусть рассматриваемая экономическая система характеризуется набором локальных критериев (целевых функций) и известен вектор весовых коэффициентов (вектор приоритетов) критериев , характеризующий важности соответствующих критериев, причем:

.

В этом случае функция предпочтения выбирается в виде:

(5.1)

и задача векторной оптимизации сводится к задаче скалярной оптимизации, рассмотренной ранее. При решении данной задачи учитывается система функций-ограничений для каждой из целевых функций . К недостаткам данного метода можно отнести то, что решение, оптимизирующее функцию предпочтения, может оказаться неудовлетворительным по одному или сразу нескольким частным показателям. Это объясняется тем, что при достижении максимума функции предпочтения недопустимо малые значения некоторых показателей компенсируются большими значениями остальных.

К этой же группе методов относятся методы, в которых используется среднестепенная функция предпочтения вида:

,

где параметр .

оптимальность парето векторный многокритериальный

Б. Методы, использующие ограничения на критерии, включают два подхода: метод ведущего критерия и метод последовательных уступок.

В методе ведущего критерия все целевые функции, кроме одной, переводятся в разряд ограничений. Пусть - вектор, компоненты которого представляют собой нижние границы соответствующих критериев. Тогда задача записывается в виде:

где - исходная система функций-ограничений. Метод ведущего критерия применяется в таких задачах, как минимизация полных затрат при условии выполнения плана по производству различных видов продукции, максимизация выпуска комплектных наборов при ограничении на потребляемые ресурсы и ряда других.

Алгоритм метода последовательных уступок состоит в следующем:

Критерии нумеруются в порядке убывания важности;

Определяется оптимальное значение наиболее важного критерия . Лицом, принимающим решение, устанавливается величина уступки по этому критерию;

Решается задача по критерию с дополнительным ограничением ;

Пункты 2 и 3 повторяются последовательно для критериев .

В. При решении задач методами целевого программирования предполагается приближение значения каждого критерия к определенной величине , т.е. достижение определенной цели. В самом общем виде задача целевого программирования может быть сформулирована как минимизация сумм отклонений целевых функций (критериев) от целевых значений с нормированными весами :

, (5.2)

где - вектор целевых значений, - расстояние (мера отклонения) между и , . Часто (например, в случае линейного целевого программирования) полагают . Следует отметить, что точка , как правило, не принадлежит области допустимых значений, в связи с чем, ее иногда называют идеальной или утопической точкой.

Г. В методах, основанных на отыскании компромиссного решения, используется принцип гарантированного результата. Задача может быть сформулирована следующим образом:

.(5.3)

Данным методом могут решаться задачи с заданными приоритетами критериев и многовекторные задачи.

Д. В методах основанных на человеко-машинных процедурах (методы интерактивного программирования) решение задачи происходит в интерактивном режиме. ЛПР оценивает полученное решение и вносит или изменяет заранее заданные коэффициенты или уступки по критериям, а также определяет направление оптимизации. Эта информация служит для постановки новой задачи оптимизации и получения промежуточного решения. Диалог продолжается до тех пор, пока решение не будет удовлетворять требованиям ЛПР. Основным достоинством данного метода является использование знаний и интуиции ЛПР, глубоко понимающего смысл задачи и способного правильно корректировать промежуточные результаты в нужном направлении.

Отметим еще один важный метод агрегирования целевой функции. В некоторых случаях, когда одни частные критерии желательно увеличивать, а другие – уменьшать, может быть использована функция агрегирования в виде отношения одних критериев к другим. При этом первая группа критериев отождествляется с целевым эффектом, а другая – с затратами на его достижение. Результатом агрегирования в этом случае выступает удельная эффективность:

,

где - прибыль (полезный эффект), - затраты. Этот метод часто называют методом “затраты – эффект”.

Перейдем к рассмотрению информационных технологий решения ряда задач векторной оптимизации. В процессе рассмотрения мы ограничимся наиболее широко используемыми методами. Для решения задач будем использовать процессор электронных таблиц Excel, способный достаточно просто и эффективно решать задачи подобного рода.

Пример 1. Свертывание системы показателей эффективности.

Рассмотрим следующую задачу векторной оптимизации:

,

где целевые функции и соответствующие им ограничения имеют вид:

Решим задачу в Excel и проанализируем зависимость получаемого решения от значения коэффициентов .

Внесем данные на рабочий лист в соответствии с Рис. 5.1. Под значения переменных отведем ячейки A16:C16. В ячейки A6:A8 и A10:A12 введем формулы, определяющие ограничения на значения переменных, в ячейки E16 и G16 – формулы для расчета соответствующих целевых функций, в ячейку F20 – формулу для расчета функции .

Чрезвычайно важным является использование в данном методе общей для всех функций системы ограничений.

Рис. 1. Данные для решения примера 1

Вызовем Поиск решения и зададим область изменения переменных, целевую ячейку и систему ограничений стандартным образом. В результате получим ответ: (для данных значений параметров (см. Рис. 1)) Полагая значения параметров равными, например, получим другое оптимальное значение исследуемой функции Таким образом, можно сделать вывод о весьма существенной чувствительности значений данной оптимизируемой функции к вариациям весовых коэффициентов.

Пример 2. Ограничения на критерии. Метод последовательных уступок.

Характеристики

Тип файла
Документ
Размер
3,43 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6417
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее