183949 (743656), страница 2
Текст из файла (страница 2)
. (16)
У цьому випадку , отже приходимо до раніше наведеної суміші розподілу. У ролі щільностей ймовірності найпростішого типу можуть виступати: гаусові, прямокутні, трикутні розподіли.
На рис.6 для прикладу показано, як за допомогою гаусових розподілів апроксимується щільність розподілу складнішого виду
(17)
Рисунок 6 - Апроксимація складної щільності ймовірності за допомогою гаусових розподілів
Таким чином, алгоритм моделювання ВВ методом суперпозиції містить у собі такі етапи:
вибір вигляду найпростішої щільності розподілу, за допомогою якої апроксимується задана щільність ймовірності;
моделюється реалізація ВВ, яка приймає дискретні значення з заданими імовірностями
;
для отриманого значення i моделюються реалізація ВВ з -тою щільністю ймовірності;
з нову моделюється реалізація ВВ, яка приймає дискретні значення ;
потім виконується процес моделювання реалізації ВВ із новим номером щільності ймовірності;
зазначені етапи моделювання повторюються доти, доки не буде отримана вибірка реалізацій ВВ необхідного обсягу.
Моделювання гаусових випадкових величин методом сумації
Введемо стандартну гаусову ВВ із нульовим математичним сподіванням
і одиничною дисперсією
, (18)
де - символ гаусової щільності ймовірності.
У математичній статистиці доведено, що сумма значного числа незалежних між собою і рівномірно розподілених ВВ має гаусовий закон розподілу. Тому стандартну гаусову ВВ можна моделювати відповідно до виразу:
, (19)
де - незалежні між собою БВВ.
У загальному випадку довільних гаусову ВВ можна записати як
, (20)
де - це необхідні математичне сподівання і дисперсія ВВ.
Таким чином, алгоритм моделювання гаусової ВВ із заданими математичним сподіванням і дисперсією містить такі операції:
одержання незалежних реалізацій БВВ і виконання над ними перетворення відповідно до зазначеного співвідношення (19);
виконання перетворень (20) для одержання ВВ із заданими .
Моделювання випадкових величин із експоненціальним розподілом та розподілом Релея
Для моделювання вказаних ВВ використовуються стандартні гаусові випадкові величини . Спочатку виконується моделювання ВВ згідно виразу
, (21)
де - стандартні ВВ із гаусовим розподілом (
).
Випадкова величина (21) має
-розподіл з
ступенями свободи
, (22)
де ,
- це гамма-функція.
В окремому випадку ця ВВ має експоненціальний розподіл з параметром
. (23)
ВВ, що визначається співвідношенням
, (24)
має розподіл Релея
.
Тут ,
- незалежні між собою стандартні гаусові ВВ.
Наведені співвідношення для одержання ВВ фактично є моделюючими алгоритмами, що містять такі етапи:
моделювання стандартних гаусових ВВ (
);
виконання операцій обчислення ВВ згідно (21) (для -розподілу);
для експоненційного розподілу алгоритм той же, тільки ;
для розподілу Релея (24) моделювання згідно (24).
Размещено на Allbest.ru