183752 (743626), страница 3

Файл №743626 183752 (Математические методы экономики) 3 страница183752 (743626) страница 32016-08-02СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Если придерживаться максиминной стратегии, то при любом поведении стороны В (конкурента) гаран­тирован выигрыш, во всяком случае не меньше . Поэтому называют также ценой игры - тот гаран­тированный минимум, который можно обеспечить при наиболее осторожной (перестраховочной) стратегии.

Очевидно, что аналогичные распределения можно провести и для конкурента В, который должен рас­смотреть все свои стратегии, выделяя для каждой из них максимальные значения проигрыша: (последняя строка матрицы).

Из всех значений находят минимальное:

,

которое дает минимаксный выигрыш или минимакс.

Такая -стратегия - минимаксная, придерживаясь которой сторона В гарантировано, что в любом случае проиграет не больше . Поэтому называют верхней ценой игры.

Если , то число С называют чистой ценой игры или седловой точкой.

Для игры с седловой точкой нахождение решения состоит в выборе пары максиминной и минимаксной стратегий, которые являются оптимальными, так как любое отклонение от этих стратегий приводит к умень­шению выигрыша первого игрока и увеличению про­игрыша второго игрока по сравнению с ценой игры С.

Однако не все матрицы имеют седловую точку. Тогда решение находят, применяя смешанные стратегии, то есть чередуя случайным образом несколько чистых стра­тегий (гибкая тактика).

Вектор, каждая из компонент которого показывает относительную частоту использования игроком соответ­ствующей чистой стратегии, называют смешанной стра­тегией данного игрока.

Из этого определения следует, что сумма компонент этого вектора равна единице, а сами компоненты не отрицательны.

Обычно смешанную стратегию первого игрока обо­значают как вектор

, а второго игрока - как вектор , где . (5.1.1).

Если u° - оптимальная стратегия первого игрока, z° - оптимальная стратегия второго игрока, то число - называют ценой игры.

Для того чтобы число - было ценой игры, а u° и z° — оптимальными стратегиями, необходимо и до­статочно выполнение неравенств:

, (5.1.2)

. (5.1.3)

Если один из игроков применяет оптимальную сме­шанную стратегию, то его выигрыш равен цене игры и вне зависимости от того, с какими частотами будет применять второй игрок стратегии, вошедшие в опти­мальную, в том числе и чистые стратегии

Внимание к седловым точкам в теории игр традиционно. Объясняется это недоверием к максимину, как к принципу оптимального выбора в том случае, когда нет седловой точки. Поэтому естественно стремление заполнить промежуток между максимином и минимаксом путем применения смешанных стратегий.

Однако, не следует забывать, что:

1) применение смешанных стратегий рисковано, когда игра не повторяется;
2) если игра повторяется, надо иметь уверенность, что у про­тивника нет информации о конкретных решениях другого игрока;
3) противник не обязан применять смешанные стратегии, равно как и стремиться к цели, противоположной цели другого игрока.

Обозначим смешанную стратегию первого игрока p = {pi}, где pi - вероятность применения i-й стратегии, , . Пусть смешан­ная стратегия второго игрока , , qj - вероятность при­менения j-й стратегии, , . Р и Q определяют матема­тическое ожидание платежа:

.

Теорема фон Неймана. Любая матричная игра имеет седловую точ­ку в смешанных стратегиях.

Доказательство. Множества M и N ограничены и замкнуты, так как , , а функция W непрерывна по P и Q . W линейна по P при фиксированных Q, следовательно, вогнута по P при фиксированных Q. Аналогично W выпукла по Q при фиксированных P. M и N выпуклы.

Действительно, рассмотрим такие и , что , , тогда , .

Складывая, получим .

Кроме того, .

Следовательно, при и

тоже смешанная стратегия.

Применяя фундаментальную теорему, получим то, что требуется доказать:

.

Опираясь на доказанную теорему, можно быть уверенным, что ре­шение игры в смешанных стратегиях всегда существует (если только вообще их можно применять). В теории игр доказывается теорема, указывающая на эквивалентность решения матричной игры в смешанных стратегиях и двойственной задачи линейного программирования.

Пусть Po и Qo оптимальные смешанные стратегии, v - цена игры, тогда


.

Из теорема следует, что

(4)

(5)

.

Обозначим .

Поделим (4) на v , получим

.

Из этой задачи линейного программирования можно получить оптимальные стратегии первого игрока (оперирующей стороны).

Аналогично, если , получится задача линейного программирования для получения оптимальных стратегий второго игрока: .

Игры с природой. Оптимальная стратегия в игре с природой при известном распределении её состояний. Максиминный критерий Вальда выбора стратегии в игре с природой при неизвестном распределении её состояний. Критерий минимаксного риска Сэвиджа выбора стратегии в игре с природой при неизвестном распределении её состояний. Критерий пессимизма-оптимизма Гурвица выбора стратегии в игре с природой при неизвестном распределении её состояний.

В случае, когда между сторонами (участниками) от­сутствует «антагонизм» (например, в процессе работы предприятий и торговых посредников), такие ситуации называют «играми с природой».

Здесь первая сторона принимает решение, а вторая сторона — «природа» не оказывает первой стороне со­знательного, агрессивного противодействия, но ее ре­альное поведение неизвестно.

Пусть торговое предприятие имеет т стратегий: и имеется n возможных состояний природы: . Так как природа не является заинте­ресованной стороной, исход любого сочетания поведения сторон можно оценить выигрышем первой стороны для каждой пары стратегий и . Все показатели игры заданы платежной матрицей .

По платежной матрице можно принять ряд решений. Например, оценить возможные исходы: минимальный выигрыш

то есть наименьшая из величин в каждой i-й строке как пессимистическая оценка; максимальный выиг­рыш – то наилучшее, что дает выбор i-го варианта

При анализе «игры с природой» вводится показатель, по которому оценивают, насколько то или иное состо­яние «природы» влияет на исход ситуации. Этот по­казатель называют риском.

Риск при пользовании стратегией и состоянии «природы» оценивается разностью между максималь­но возможным выигрышем при данном состоянии «при­роды» и выигрышем при выбранной стратегии .

.

Исходя из этого определения можно оценить мак­симальный риск каждого решения:

.

Решения могут приниматься по результатам анализа ряда критериев.

Критерий, основанный на известных вероятност­ных состояниях «природы».

Если известны вероятности состояний «природы» (на­пример, спроса по данным анализа за прошлые годы):

где ,

то в качестве показателя эффективности (рацио­нальности, обоснованности) стратегии берется средний (математическое ожидание) - выигрыш применения этой стратегии:

,

а оптимальной считают стратегию, для которой этот показатель эффективности имеет максимальное значе­ние, то есть

.

Если каждому решению соответствует множество возможных результатов с вероятностями , то сред­нее значение выигрыша можно определить по формуле

,

а оптимальная стратегия выбирается по условию

.

В этом случае можно воспользоваться и стратегией минимального среднего риска для каждого i-го состо­яния «природы»

.

Максиминный критерий Вальда предполагает выбор решения, при котором гарантируется максимальный выигрыш в наихудших условиях внешней среды (состояния «при­роды»):

.

Согласно критерия пессимизма-оптимизма Гурвица при выборе решения вместо двух крайностей в оценке ситуации (оптимум-пессимизм) придерживаются некоторого ком­промисса, учитывающего возможность как наихудшего, так и наилучшего поведения «природы»:

,

где x - показатель пессимизма-оптимизма (чаще всего 0,5).

Если х = 1 критерий слишком пессимистичный, если х = 0 – слишком отптимистичный.

По критерию минимаксного риска Сэвиджа выбирают ту стратегию, при которой величина риска имеет минимальное значение в самой неблаго­приятной ситуации:

Характеристики

Тип файла
Документ
Размер
5,51 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6363
Авторов
на СтудИзбе
310
Средний доход
с одного платного файла
Обучение Подробнее