183748 (743625), страница 2

Файл №743625 183748 (Математические методы в экономике) 2 страница183748 (743625) страница 22016-08-02СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

6. Заполняется таблица соответствующая новому базисному решению. В этой таблице, прежде всего заполняются клетки строки r с вводимой переменной xk. Для этого все элементы этой строки делятся на направляющий элемент. Получаются элементы новой строки:

br/ark, ar1/ark , ... , arn/ark.

Остальные элементы новой таблицы определяются по правилу прямоугольника:

П роцесс вычислений заканчивается, когда найдено оптимальное решение см. п.п.3.6.

Критерий оптимальности решения для нахождения максимального значения целевой функции: если в выражении линейной функции через неосновные переменные отсутствуют положительные коэффициенты при неосновных переменных, то решение оптимально.

Критерий оптимальности решения для нахождения минимального значения целевой функции: если в выражении линейной функции через неосновные переменные отсутствуют отрицательные коэффициенты при неосновных переменных, то решение оптимально.


§3. «Метод искусственного базиса».

Если ограничения исходной задачи содержат единичную матрицу порядка М, то при неотрицательности правых частей уравнений определен первоначальный план, из которого с помощью симплекс – таблиц находится оптимальный план.

Если ограничения можно привести к виду:

Ах≤А0 при А0≥0, то система ограничений содержит единичную матрицу всегда.

Если задача не содержит единичной матрицы и не приводится к указанному виду, то для решения задачи используется метод искусственного базиса.

Для получения единичной матрицы к каждому ограничению прибавляют по одной неотрицательной переменной, которые называются искусственными. Единичные вектора, соответствующие искусственным переменным, образуют искусственный базис.

В целевую функцию искусственные переменные добавляются с коэффициентом М, если задана задача на нахождение минимума. В этом случае величина М предполагается достаточно большим положительным числом. Если необходимо найти минимальное значение целевой функции, то искусственные переменные записывают с коэффициентом (-М), который предполагается достаточно малым отрицательным числом. Для нахождения оптимального плана в случае, если заранее не задана величина М, применяется симплекс-метод, который в таблице имеет на одну строку больше, чем обычная симплекс-таблица.

Строка оценок разбивается на две:

(m+1) – оценка, не зависящая от М;

(m+2) – коэффициент при М.

По (m+2) строке определяют вектор, подлежащий включению в базис. Итерационный процесс проводят до исключения из базиса всех искусственных векторов. Затем процесс продолжают по (m+1) строке обычным симплекс-методом.


§4. «Транспортная задача»

Классическая транспортная задача формулируется следующим образом:

Имеется m пунктов отправления (производства) A1, A2, ... ,Am, в которых расположены запасы некоторого однородного продукта (груза). Объём этого продукта в пункте Ai составляет ai единиц. Кроме того, имеется n пунктов потребления B1, B2, ... ,Bn. Объём потребления в пункте Bj составляет bj единиц. Предполагается, что из каждого пункта отправления возможна транспортировка продукта в любой пункт потребления. Известна также стоимость cij перевозки единицы продукта из пункта Ai в пункт Bj .

Требуется составить такой план перевозок, при котором все заявки пунктов потребления полностью выполнялись бы пунктами отправления, а общая стоимость перевозок была минимальной.

При такой постановке данную задачу называют транспортной задачей по критерию стоимости.

В общем виде исходные данные представлены в таблице 9.

Таблица 2

Транспортная задача называется закрытой, если суммарный объем отправляемых грузов равен суммарному объему потребности в этих грузах по пунктам назначения

Если такого равенства нет (потребности выше запасов или наоборот), задачу называют открытой.


П.1 Алгоритм метода минимального элемента.
  1. Из распределительной таблицы 9 выбирают наименьшую стоимость и в клетку, которая ей соответствует, помещают меньшее из чисел ai или bj (если таких клеток несколько, то выбирают любую);

  2. Из рассмотрения исключают либо строку, соответствующую поставщику, запасы которого полностью израсходованы, либо столбец, соответствующий потребителю, потребности которого полностью удовлетворены, либо и то и другое;

  3. Из оставшейся части таблицы снова выбирают наименьшую стоимость и процесс продолжается до тех пор, пока все запасы не будут вывезены, а потребности удовлетворены;

  4. Рассчитывают транспортные расходы: сумма произведений количества перевезенной продукции на стоимость для занятых клеток.


П. 2 Алгоритм метода Фогеля.
  1. В каждой строке находят разность между двумя наименьшими стоимостями и записывают ее около соответствующей строки справа;

  2. В каждом столбце находят разность между двумя наименьшими стоимостями и записывают ее под соответствующим столбцом;

  3. Среди всех полученных разностей находят максимальную и распределяют объем перевозки в клетку строки или столбца с наименьшей стоимостью;

  4. Исключают из рассмотрения строку или столбец с распределенными поставками и возвращаются к пункту 1. Процесс продолжается до тех пор, пока все запасы не будут вывезены, а потребности удовлетворены;

  5. Когда план построен, рассчитываются транспортные расходы.

П.3 Алгоритм метода двойного предпочтения.
  1. В таблице 9 в каждом столбце отмечают галочкой клетку с наименьшей стоимостью и в каждой строке отмечают галочкой клетку с наименьшей стоимостью;

  2. В клетки с двумя галочками записывают максимально возможные объемы перевозок, каждый раз, исключая соответствующий столбец или строку;

  3. Распределяют перевозки по клеткам с одной галочкой;

  4. В оставшейся части таблицы перевозки распределяют в клетки с наименьшей стоимостью.

  5. Когда план построен, рассчитываются транспортные расходы.


П.4. Алгоритм метода северо-западного угла.
  1. Пользуясь таблицей 9 распределяют груз, начиная с левой верхней, условно называемой северо-западной, клетки (1,1). Необходимо удовлетворить потребности В1 за счет поставщика А1;

  2. а). Если b1>a1, в клетку (1,1) записывают a1 и строку 1 вычеркивают из рассмотрения;

b). Если a1>b1, в клетку (1,1) записывают b1 и столбец 1 вычеркивают из рассмотрения;

  1. а). Если b1>a1, ∆= b1 - a1 – неудовлетворенные потребности. Спускаются на клетку вниз и сравнивают ∆ с a2;

b). Если a1>b1, ∆=a1 - b1 – не вывезенные запасы. Двигаются по строке вправо и сравнивают ∆ с b2;

  1. Необходимо вернуться к пункту 2;

  2. Рассчитываются транспортные расходы.


П.5. Алгоритм метода потенциалов.
  1. проверяется тип модели транспортной задачи и в случае открытой модели сводим ее к закрытой;

  2. находится опорный план перевозок путем составления 1-й таблицы одним из способов - северо-западного угла или наименьшей стоимости;

  3. проверяем план (таблицу) на удовлетворение системе уравнений и на невыражденность; в случае вырождения плана добавляем условно заполненные клетки с помощью « 0 »;

  4. для опорного плана определяются потенциалы ui и vj, соответствующие базисным клеткам, по условию:

ui + vj = cij

Таких уравнений будет m n 1 , а переменных будет m n. Для их определения одну из переменных полагают равной любому постоянному значению. Обычно принимают u1 = 0.

После этого для небазисных клеток опорного плана определяются оценки ,

где

При этом если 0, то опорный план оптимален, если же среди окажется хотя бы один положительный элемент, то опорный план можно улучшить.

Улучшение опорного плана осуществляется путем целенаправленного переноса из клетки в клетку транспортной таблицы отдельных перевозок без нарушения баланса по некоторому замкнутому циклу.

Циклом транспортной таблицы называется последовательное соединение замкнутой ломаной линией некоторых клеток, расположенных в одном ряду (строке, столбце), причем число клеток в одном ряду должно быть равно двум.

Каждый цикл имеет четное число вершин, одна из которых в клетке с небазисной переменной, другие вершины в клетках с базисными переменными. Клетки отмечаются знаком «+», если перевозки в данной клетке увеличиваются и знаком «–» в противном случае. Цикл начинается и заканчивается на выбранной небазисной переменной и отмечается знаком «+». Далее знаки чередуются.

Количество единиц продукта, перемещаемого из клетки в клетку по циклу, постоянно, поэтому сумма перевозок в каждой строке и в каждом столбце остаются неизменными. Стоимость всего плана изменяется на цену цикла.

Цена цикла – это стоимость перевозки единицы продукта по циклу с учетом знаков вершин.

Улучшение опорного плана осуществляется путем нахождения цикла с отрицательной ценой.

  1. Если критерий оптимальности не выполняется, то переходим к следующему шагу. Для этого:

а) в качестве начальной небазисной переменной принимается та, у которой оценка имеет максимальное значение;

б) составляется цикл пересчета;

в) находится число перерасчета по циклу: число X=min{Xij}, где Xij - числа в заполненных клетках со знаком « - »;

г) составляется новая таблица, добавляя X в плюсовые клетки и отнимая X из минусовых клеток цикла;

  1. Возвращаются к пункту 3 и т.д.

  2. Через конечное число шагов (циклов) обязательно приходят к ответу, так как транспортная задача всегда имеет решение.


§5. «Задачи целочисленного программирования. Метод Гомори»

Задача линейного целочисленного программирования формулируется следующим образом:

Найти такое решение (план) Х=(х1, х2,…, хn), при котором линейная функция

(5.1)

п

(5.2)

(5.3)

(5.4)

ринимает максимальное значение при ограничениях:

Методы целочисленной оптимизации можно разделить на три основные группы:

    1. методы отсечения;

    2. комбинаторные методы;

    3. приближенные методы.

Подробнее остановимся на методах отсечения. Сущность методов отсечения состоит в том, что сначала задача решается без условий целочисленности. Если полученный план целочисленный, задача решена. В противном случае к ограничениям задачи добавляется новое ограничение, обладающее следующими свойствами:

      • оно должно быть линейным;

      • должно отсекать найденный оптимальный нецелочисленный план;

      • не должно отсекать ни одного целочисленного плана.

Дополнительное ограничение, обладающее указанными свойствами, называется правильным отсечением.

Далее задача решается с учетом нового ограничения. После этого в случае необходимости добавляется еще одно ограничение и т.д.

Один из алгоритмов решения задачи линейного целочисленного программирования, предложенный Гомори, основан на симплексном методе и использует достаточно простой способ построения правильного отсечения.

Характеристики

Тип файла
Документ
Размер
1,12 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6384
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее