183522 (743587), страница 2

Файл №743587 183522 (Методы дискриминантного анализа) 2 страница183522 (743587) страница 22016-08-02СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

(15)

Из этой формулы и определяется вектор коэффициентов дискриминантной функции (А)

Полученные значения коэффициентов подставляют в формулу (1) и для каждого объекта в обеих группах (множествах) вычисляют дискриминантные функции, затем находят среднее значение для каждой группы. Таким образом, каждое i-е наблюдение, которое первоначально описывалось m переменными, будет как бы перемещено в одномерное пространство, т.е. ему будет соответствовать одно значение дискриминантной функции, следовательно, размерность признакового пространства снижается.

3. Классификация при наличии двух обучающих выборок

Перед тем как приступить непосредственно к процедуре классификации, нужно определить границу, разделяющую в частном случае две рассматриваемые группы. Такой величиной может быть значение функции, равноудаленное от и , т.е.

(16)

Величина С называется константой дискриминации.

На рис.1 видно, что объекты, расположенные над прямой f(x)= + +…+ =C , находятся ближе к центру множества и, следовательно, могут быть отнесены к первой группе, а объекты, расположенные ниже этой прямой, ближе к центру второго множества, т.е. относятся ко второй группе. Если граница между группами выбрана так, как сказано выше, то суммарная вероятность ошибочной классификации минимальная.

Рассмотрим пример использования дискриминантного анализа для проведения многомерной классификации объектов. При этом в качестве обучающих будем использовать сначала две выборки, принадлежащие двум классам, а затем обобщим алгоритм классификации на случай k классов.

Пример 1. Имеются данные по двум группам промышленных предприятий машиностроительного комплекса:

-фондоотдача основных производственных фондов, руб.;

-затраты на рубль произведенной продукции, коп.;

-затраты на сырье и материалов на один рубль продукции, коп.

Номер

Х1

Х2

ХЗ

предприятия

1

0,50

94,0

8,50

l-я группа

2

0,67

75,4

8,79

3

0,68

85,2

9,10

4

0,55

98,8

8,47

5

1,52

81,5

4,95

2-я группа

6

1,20

93,8

6,95

7

1,46

86,5

4,70

Необходимо провести классификацию четырех новых предприятий, имеющих следующие значения исходных переменных:

l-е предприятие: = 1,07, =93,5, =5,30,

2-е предприятие: = 0,99, =84,0, =4,85,

3-е предприятие: = 0,70, =76,8, =3,50,

4-е предприятие: = 1,24, =88,0, =4,95.

Для удобства запишем значения исходных переменных для каждой группы предприятий в виде матриц и :

(17)

Рассчитаем среднее значение каждой переменной в отдельных группах для определения положения центров этих групп:

I гр. =0,60, =88,4, =8,72

II гр. =1,39, =87,3, =5,53.

Дискриминантная функция f(x) в данном случае имеет вид:

f(х) = + + (18)

Коэффициенты , и вычисляются по формуле:

A= ( - ), (19)

где и - векторы средних в первой и второй группах; А - вектор коэффициентов; - матрица, обратная совместной ковариационной матрице.

Для определения совместной ковариационной матрицы нужно рассчитать матрицы и . Каждый элемент этих матриц представляет собой разность между соответствующим значением исходной переменной и средним значением этой переменной в данной группе (k - номер группы):

Тогда совместная ковариационная матрица будет равна:

, (20)

где , - число объектов l-й и 2-й группы;

(21)

Обратная матрица будет равна:

.(22)

Отcюда находим вектор коэффициентов дискриминантной функции по формуле:

(23)

т.е. =-185,03, =1,84, =4,92.

Подставим полученные значения коэффициентов в формулу (18) и рассчитаем значения дискриминантной функции для каждого объекта:

(24)

Тогда константа дискриминации С будет равна:

С = (94,4238-70,0138) = 12,205.

После получения константы дискриминации можно проверить правильность распределения объектов в уже существующих двух классах, а также провести классификацию новых объектов.

Рассмотрим, например, объекты с номерами 1, 2, З, 4. Для того чтобы отнести эти объекты к одному из двух множеств, рассчитаем для них значения дискриминантных функций (по трем переменным):

= -185,03 х 1,07 + 1,84 х 93,5 + 4,92 х 5,30 = 0,1339,

= -185,03 х 0,99 + 1,84 х 84,0 + 4,92 х 4,85 = -4,7577,

= -185,03 х 0,70 + 1,84 х 76,8 + 4,92 х 3,50 = 29,0110,

= -185,03 х 1,24 + 1,84 х 88,0 + 4,92 х 4,95 = -43,1632.

Таким образом, объекты 1, 2 и 4 относятся ко второму классу, а объект 3 относится к первому классу, так как < с, < с, > с, < с.

4. Классификация при наличии k обучающих выборок

При необходимости можно проводить разбиение множества объектов на k классов (при k> 2). В этом случае нужно рассчитать k дискриминантных функций, так как классы будут отделяться друг от друга индивидуальными разделяющими поверхностями. На рис. 3 показан случай с тремя множествами и тремя дискриминантными переменными:

Рис.3 Три класса объектов и разделяющие их прямые

– первая, – вторая, - третья дискриминантные функции.

Пример 2. Рассмотрим случай, когда существует три класса (множества) объектов. Для этого к двум классам из предыдущего примера добавим еще один. В этом случае будем иметь уже три матрицы исходных данных:

(25)

Если в процессе дискриминации используются все четыре переменные ( , , , ) то для каждого класса дискриминантные функции имеют вид:

(26)

Определим теперь, к какому классу можно отнести каждое из четырех наблюдений, приведенных в табл.2:

Таблица 2- Исходные данные

Номер

наблюдения

1

1,07

93,5

5,30

5385

2

0,99

84,0

4,85

5225

3

0,70

76,8

3,50

5190

4

1,24

88,0

4,95

6280

Подставим соответствующие значения переменных , , , в выражение (26) и вычислим затем разности:

- =-20792,082+31856,41=11064,328 0,

- =-20792,082+40016,428=19224,346 0.

Следовательно, наблюдение 1 в табл.2 относится к первому классу. Аналогичные расчеты показывают, что и остальные три наблюдения следует отнести тоже к первому классу.

Чтобы показать влияние числа дискриминантных переменных на результаты классификации, изменим условие последнего примера. Будем использовать для расчета дискриминантных функций только три переменные: , , . В этом случае выражения для дискриминантныx функций будут иметь вид:

(27)

Подставив в эти выражения значения исходных переменных для классифицируемых объектов, нетрудно убедиться, что все они попадают в третий класс, так как

- =-26,87 0,

- =-37,68 ,

- =-10,809 .

Таким образом, мы видим, что изменение числа переменныx сильно влияет на результат дискриминантного анализа. Чтобы судить о целесообразности включения (удаления) дискриминантной переменной, обычно используют специальные статистические критерии, позволяющие оценить значимость ухудшения или улучшения разбиения после включения (удаления) каждой из отобранных переменных.

5. Взаимосвязь между дискриминантными переменными и дискриминантными функциями

Для оценки вклада отдельной переменной в значение дискриминантной функции целесообразно пользоваться стандартизованными коэффициентами дискриминантной функции. Стандартизованные коэффициенты можно рассчитать двумя путями:

  • стандартизовать значения исходных переменных таким образом, чтобы их средние значения были равны нулю, а' дисперсии - единице;

  • вычислить стандартизованные коэффициенты исходя из значений коэффициентов в нестандартной форме:

(28)

где р - общее число исходных переменных, т - число групп, - элементы матрицы ковариаций:

Характеристики

Тип файла
Документ
Размер
34,52 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6384
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее