1251-1 (742860), страница 2

Файл №742860 1251-1 (Эпюр как инструмент исследования потребительского поведения) 2 страница1251-1 (742860) страница 22016-08-02СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Рисунок 1. Проекции равновесных кривых товаров А и Б

На рисунке 1 изображены две проекции равновесных кривых на плоскости объем-доход, причем эти проекции отличны одна от другой. Для того, чтобы изобразить кривую совместного распределения объемов этих двух товаров в трехмерном пространстве в зависимости от дохода, необходимо представить, что это пространство определяют три ортогональные плоскости, а именно:

плоскость доход - объем товара А,

плоскость доход-объем товара Б,

плоскость объем товара Б -объем товара А.

Кривая совместного распределения товаров в зависимости от дохода, располагающаяся в указанном трехмерном пространстве, имеет в общем случае сложный нелинейный характер. Как и любая кривая в пространстве, эта кривая также имеет свои проекции на три составляющие данное пространство плоскости. Две проекции, как легко заметить из графиков рисунка 1, уже есть. Остается найти третью проекцию на плоскость объемов товаров.

Как показал мой первый опыт публичного представления элементов экономической теории в пространстве [12], значительная часть ученых-экономистов, при ознакомлении с этой публикацией, затрудняется именно в понимании методики таких построений.

Это обстоятельство вынуждает меня более подробно описать методику построения третьей проекции по двум уже имеющимся. Для этого на рисунке 2 мною изображено то самое трехмерное пространство, о котором идет речь. Впрочем, если быть более точным, изображен первый квадрант этого пространства. Все остальные квадранты в данном пространстве просто не существуют. Действительно, разве может быть отрицательным, например, доход? Конечно же, нет! Также не может быть отрицательных цен и доходов.

Значит, по определяющим это пространство осям координат расположены положительные значения дохода, объема товара А и объема товара Б.

Очевидно, что любая точка в этом трехмерном пространстве с декартовыми координатами будет определяться некоторой величиной дохода, некоторой величиной объема товара А и некоторой конкретной величиной объема товара Б. Любая другая фигура в этом трехмерном пространстве также будет определяться набором трех указанных значений на осях пространства. Естественно, что если рассматривать другие координаты, например, полярные, то координаты любой точки будут в них определяться по-другому.

Легко убедиться также и в том, что это трехмерное декартово пространство действительно составляют указанные три ортогональные плоскости. Очевидно также, что именно в первом квадранте трехмерного декартова пространства (там, где все координаты не отрицательны) и находится кривая совместного распределения объемов товаров в зависимости от доходов потребителя.

Рисунок 2. Пространство "доход потребителя - объем товара А - объем товара Б"

Меня сейчас интересует возможность изучения проекции кривой, находящейся в данном пространстве, на плоскость объемов товаров.

Сама кривая, как легко догадаться, имеет очень сложный нелинейный характер и добиться ее точного изображения на рисунке 2 очень сложно. Да это и не особенно нужно - в распоряжении имеются две проекции данной кривой, и по ним следует построить третью проекцию. Этого можно добиться, воспользовавшись процедурой построения эпюров, которая была показана в предыдущем параграфе. Как и в примере параграфа 2.3 вновь необходимо представить себе, что одна из осей пространства как бы разрезана вдоль и пополам и все три ортогональные плоскости развернуты на одной плоскости. Вообще-то таким образом можно любую из осей пространства. Но следует вспомнить, что в распоряжении имеются проекции кривой на две плоскости . Единственная из осей пространства, встречающаяся на этих проекциях дважды, - это ось доходов. Следовательно, она уже и пространство следует на эпюре представлять так, как это показано на рисунке 3.

Таким образом, в данном случае оказывается достаточно легко использовать процедуру построения эпюров для того, чтобы найти проекцию кривой на плоскость объемов. Для этого в первом квадранте рисунка 3 необходимо изобразить проекцию равновесной кривой товара А на плоскость доход-объем, а в третьем квадранте - проекцию равновесной кривой товара Б на плоскость доход-объем.

Если сейчас я сразу же изображу проекции рисунка 1 на эпюре, последующие построения и выводы не для каждого читателя будут понятными. Поэтому в данном случае следует использовать процедуру изучения проблемы по принципу .

Рисунок 3. Разворот на плоскость пространства "доход потребителя - объем товара А - объем товара Б" (первый этап построения эпюра)

Самый простой случай в данной ситуации - когда указанные две проекции на плоскости одинаковы. Я уже указывал выше на то, что этот случай маловероятен, тем не менее удобнее всего начинать именно с него. Действительно, одному и тому же значению дохода соответствует одно и то же значение объема как на проекции в первом квадранте, так и на проекции в третьем квадранте. Это, в свою очередь, означает, что на проекции кривой во втором квадранте, координаты которого определяются значениями двух объемов, каждая точка проекции будет характеризоваться координатами, равными друг другу. Товар А начинает потребляться при том же доходе, что и товар Б; объемы максимального потребления товара А равны объему максимального потребления товара Б при одной и той же величине дохода; объемы рационального потребления у них также равны друг другу и тому подобное. По сути, во втором квадранте будет получено множество пар точек, координаты которых равны, например, (2;2), (5;5), (10;10) и т.п.

Таким образом, проекция кривой на плоскость "объем товара А - объем товара Б" будет представлять собой отрезок прямой линии, выходящий из начала координат под углом в 45 градусов. Причем, с ростом дохода линия начнет увеличиваться от нулевой точки к точке максимального значения, а затем, по той же самой траектории вернется в точку, координаты которой равны рациональным объемам потребления.

Рисунок 4. Эпюр кривой совместного распределения товаров (невероятный случай)

Описанный эпюр представлен на графике рисунка 4. На нем пунктиром показано построение наиболее характерных точек проекции кривой на плоскость объемов. Точка, обозначенная словом "max" характеризует максимальные значения объемов. Первоначальный участок кривой находится между нулевой точкой (начало координат) и этой точкой. С дальнейшим увеличением дохода проекция кривой на плоскость объемов будет представлена отрезком от точки "max" до точки "rat", которая характеризует рациональный объем потребления.

Очевидно, что рассмотренный случай является невероятным. Конечно же, в реальной жизни равновесные кривые, а значит, и их проекции никогда не совпадут полностью во всех точках. Будет пусть небольшое, но все же расхождение точек. Значит, проекция такой кривой на плоскость объемов уже будет иметь нелинейную форму. Чем больше расхождение в проекциях кривых на плоскости доход - объемы товаров, тем в большей степени совместная кривая распределения объемов будет нелинейной.

Пусть для определенности проекция равновесной кривой товара А на плоскость объем-доход имеет первоначальный объем, начинающийся из нулевой точки. Некоторая часть участка кривой совместного распределения товаров в пространстве будет лежать на плоскости объем товара А - доход. Действительно, до достижения некоторой величины дохода объемы потребления товара Б являются нулевыми. На проекции рассматриваемой кривой на плоскость объемов этот участок кривой будет изображен отрезком прямой, совпадающим с осью объемов товара А.

Рисунок 5. Эпюр кривой совместного распределения товаров и проекция на плоскость объемов

Значит, в отличие от графика рисунка 4, на котором проекция полностью сливается с отрезком прямой, выходящим из начала координат, данная кривая начнется из точки, лежащей выше начала координат на оси объемов товара А (рисунок5). На рисунке показано, что для получения этой точки необходимо на оси доходов найти такую его величину, при которой начнется приобретение товара Б. При этом товар А уже потребляется в некотором объеме. Точка с этим объемом на оси QА и есть точка начала проекции кривой на плоскость объемов. В отличие от предыдущего случая проекция уже не является линейной. Участок проекции до максимальной точки и после нее является нелинейным, хотя кривизна в этом случае незначительная.

Предположу теперь, что проекция равновесной кривой товара А на плоскость объем-доход отличается от проекции товара Б не только тем, что его потребление начинается раньше, но и тем, что максимальный объем у этой кривой выше, а доход, при котором проекция достигает этого максимума, сдвинут на оси доходов левее. Пусть при этом и объем рационального потребления данного товара меньше, чем объем рационального потребления товара Б (рисунок6).

В этом случае проекция совместного распределения товаров на плоскость объемов будет иметь очень интересный нелинейный характер.

Рисунок 6. Эпюр кривой совместного распределения товаров и проекция на плоскость объемов

Действительно, начнется эта кривая из той же точки, что и кривая, изображенная на предыдущем рисунке (рисунок 5). Затем, кривая будет стремиться к максимуму объема товара А, так как он наступает при более ранних значениях дохода. При достижении этого максимума, объем товара А постепенно начнет уменьшаться, а объем товара Б будет продолжать еще некоторое время увеличиваться - проекция кривой совместного распределения объемов двух товаров при этом движется влево и вниз.

После того, как доход потребителя достигнет величины, при которой товар Б приобретается в максимальных объемах, с дальнейшим увеличением дохода начнут уменьшаться объемы и товара А, и товара Б. Кривая совместного распределения при этом направится вправо вниз вплоть до точки рациональных объемов.

В данном случае, который вполне можно признать вероятным, получилась оригинального вида петля, как траектория совместного распределения товаров в зависимости от доходов.

Очевидно, что совместное распределение товаров на плоскости объемов может иметь и другие формы в зависимости от того, каково соотношение между наиболее характерными точками проекций равновесных кривых на плоскости объем-доход.

В частности, возможна очень интересная форма петли, которая изображена на рисунке 7. В этом случае товар А с увеличением доходов начинает потребляться раньше, чем товар Б, но товар Б покупается интенсивнее, и максимум его потребления наступает раньше. При насыщении рынка двумя товарами объем рационального потребления товара Б больше, чем товара А.

Читатель может самостоятельно построить эпюр данной кривой и осуществить построение кривой распределения объемов товаров, как одну из проекций трехмерной кривой. Для того, чтобы не загромождать книгу излишними построениями, я не привожу здесь это построение, а показываю лишь полученный результат (рисунок 7).

В результате получена очень красивой формы петля совместного распределения объемов двух товаров, которая, как видно из рассуждений, предваряющих ее построение, вовсе не является чем-то невероятным. Более того, появление таких петель в экономической практике следует считать вполне заурядным явлением.

Очень интересным в данной петле является то, что она пересекает сама себя. Одной и той же точке на плоскости объемов при этом соответствуют разные значения дохода, отражаемые данной кривой, что, как будет показано ниже, противоречит постулатам классической теории потребительского поведения (в частности, гипотезе о ненасыщаемости). Следует отметить, что кривая на плоскости - проекция трехмерной кривой, и такие пересечения проекций являются вещами обыденными в начертательной геометрии.

Характеристики

Тип файла
Документ
Размер
875,79 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7031
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее