170151 (742736), страница 2

Файл №742736 170151 (Очистка сточных вод целлюлозно-бумажной промышленности с использованием расходомеров) 2 страница170151 (742736) страница 22016-08-02СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Под действием движущейся суспензии в КОС на чувствительный элемент ППВК (гибкий электрод) действует сила, приложенная к его центру площади, которая совпадает с центром масс (для плоского электрода).

В связи с изложенными теоретическими предпосылками, учитывая выражения (1) — (5), разработана имитационная модель стенда в среде Simulink (рис. 2).

Стенд состоит из подсистем и блоков:

KameraLINEARIZE 1 и Kamera LINEARIZE 2 - подсистема, моделирующая камеры стенда согласно уравнению (5);

Flowmetr 1 и Flowmetr_2 — подсистема, решающая одновременно дифференциальные уравнения движения электрода ППВК под действием набегающего потока в КОС и электронного блока, который преобразует отклонение электрода в электрический сигнал;

ЕМР — блок, моделирующий электромагнитный привод стенда в соответствие с выражениями (3);

PID — регулятор цепи обратной связи с устройством сравнения сигналов;

Transport Delay — блок, необходимый для устранения фазового сдвига между входным и выходным сигналами при их вычитании;

Error_% — дисплей, индицирующий динамическую ошибку воспроизведения эталонного сигнала с помощью блока RMS.

Исследование модели стенда проводилось с эталонными сигналами, соответствующими диапазону реальных скоростей жидкости в трубопроводе от 0,1 до 4 м/с (от минимального до номинального). Выяснилось, что стенд воспроизводит эталонный сигнал со всеми его особенностями с высокой точностью. Пример осциллограммы входного и выходного сигналов приведен на рис. 3.

В качестве критерия работы стенда был принят показатель динамической погрешности. Динамическая погрешность определялась как отношение разности действующих значений входного и выходного сигналов к действующему значению входного. В рассмотренном случае погрешность воспроизведения не превышала 2 % во всем исследуемом диапазоне.

Полученная в ходе разработки стенда математическая модель в виде имитационной модели в среде Simulink пакета Matlab позволит в ходе дальнейшей работы решить несколько задач:

- оптимизировать настройки регулятора электропривода стенда;

  • исследовать влияние на работу стенда его конструктивных характеристик и выбрать наиболее оптимальные;

  • исследовать влияние допусков изготовления деталей стенда, например его камер, на погрешность воспроизведения эталонного сигнала;

  • выявить особенности работы стенда на различных технологических жидкостях, например волокнистой суспензии различной концентрации, оборотной воде, сточных водах;

  • отработать методику испытаний расходомеров.

Таким образом, предлагаемый подход к технологическим испытаниям приборов совместно с моделированием работы отдельных узлов и испытательного оборудования в целом позволяет выйти на новый уровень проектирования, испытаний и эксплуатации данного вида расходомеров в целях улучшения экологической обстановки на предприятиях ЦБП.

Глава 3. МАТЕРИАЛЫ С ПРИМЕНЕНИЕМ ГИДРОЛИЗНОГО ЛИГНИНА И ОТХОДОВ ЦЕЛЛЮЛОЗНО-БУМАЖНОГО ПРОИЗВОДСТВА

загрязнение атмосфера гидросфера сточный вода

Применение гидролизного лигнина. Предприятия строительных материалов, расположенные вблизи гидролизных заводов, могут утилизировать лигнин — один из наиболее емких отходов лесохимии.

Гидролизный лигнин получают при переработке древесины хвойных и лиственных пород гидролизом разбавленной серной кислотой. Выход лигнина в зависимости от вида древесины составляет 17—32%, его образуется ежегодно около 5 млн. т.

Гидролизный лигнин представляет собой природное высокомолекулярное вещество с разветвленными макромолекулами, образовавшимися при полимеризации спиртов ароматического ряда. Он имеет молекулярную массу около 11 000, нерастворим в воде и органических растворителях. Этот рыхлый продукт с размером кусков до 40 см имеет коричневый цвет и влажность до 70%. При нагревании до температуры 400—600 °С в парогазовой среде он распадается с выделением 40—50% угля (полукокса), 13—20% смолы, 15—30% надсмольной воды, небольшого количества жидких (ацетона, метилового спирта) и газообразных продуктов (СО, С02, этилена).

Сейчас сложились следующие основные направления применения гидролизного лигнина: как топливно-выгорающей добавки в производстве керамических материалов; заменителя опилок в строительных изделиях; сырья для получения феноллигниновых полимеров; пластификатора и интенсификатора измельчения.

Опыт работы ряда кирпичных заводов позволяет считать лигнин эффективной выгорающей добавкой. Он хорошо смешивается с другими компонентами шихты, не ухудшает ее формовочных свойств и не затрудняет резку бруса. Его применение наиболее продуктивно при сравнительно небольшой карьерной влажности глины.

Запрессованный в сырец лигнин при сушке горит. Горючая часть лигнина полностью улетучивается при температуре 350—400 °С, зольность составляет 4—7%. Для обеспечения кондиционной механической прочности обыкновенного керамического кирпича лигнин следует вводить в формовочную шихту в количестве до 20—25% ее объема. Обладая высокой дисперсностью, лигнин не требует, в отличие от большинства других видов выгорающих добавок, измельчения.

При использовании обычных древесных опилок в кирпиче часто образуются крупные незамкнутые поры. Причиной их появления является то, что такие многозольные добавки как сланцы, бурый уголь, изгарь, не сгорают полностью из-за трудного доступа воздуха в заполненные золой поры кирпича, а использование лигнина в сочетании с этими добавками устраняет или ослабляет эти недостатки.

Лигнин может быть использован как порообразующая добавка в производстве теплоизоляционных и легких конструкционных керамических изделий. Также он может применяться вместо опилок в производстве аглопорита. При введении лигнина улучшаются гранулометрический состав шихты (она более интенсивно и равномерно спекается) и условия охлаждения аглопорита на агломерационной машине. Добавка лигнина, увеличивая газопроницаемость шихты, тем самым снижает разрежение в вакуум-камерах ленточной агломерационной машины на 200—400 Па. Введение в шихту лигнина увеличивает пористость готового продукта за счет образования мелких замкнутых пор с тонкими перегородками, что позволяет снизить среднюю плотность аглопоритового щебня на 150—180 кг/м3, уменьшить расход угля на 20—25% и одновременно повысить приведенную прочность (отношение прочности к квадрату средней плотности).

Доказана возможность применения лигнина в качестве заполнителя ксилолитовых плит и других изделий.

Гидролизный лигнин может быть использован в дорожном строительстве в качестве наполнителя асфальтовых бетонов и сырья для производства лигниновых вяжущих. Асфальтовый бетон, наполненный лигнином, по основным показателям не уступает бетону, наполненному известняковым порошком.

Лигниновые вяжущие состоят из двух компонентов: жидкой углеводородной фракции и продукта крекинга в ней — гидролизного лигнина. Термический распад лигнина происходит при 300—310 °С. В зависимости от вида жидкого компонента и его вязкости соотношение между лигнином и углеводородной фракцией находится в пределах 1:2—1:7,5.

В основе технологии лигниновых вяжущих ( 4.8) лежит способ модификации жидкой углеводородной фракции продуктами термического распада лигнина. В зависимости от вида жидкого компонента и его вязкости соотношение между лигнином и углеводородной фракцией находится в пределах от 1:2 до 1:7,5.

Технология лигнинового вяжущего включает следующие операции: обезвоживание части каменноугольной смолы (25—35%) в специальном котле при нагреве до 240 °С; подачу смолы в реактор и разогрев ее до 300—310 °С; загрузку лигнина в реактор и нагрев смеси до 310 °С при перемешивании; крекирование лигнина при 310—320 °С в течение 1 ч; диспергирование продукта крекинга путем перекачки насосом в течение 15—20 мин; подачу в реактор остальной части каменноугольной смолы, разогретой до 90—110 °С, и смешивание ее с продуктом крекинга; перекачку вяжущего в котел и перемешивание его с конденсатом, собранным при разогреве смолы и крекинге лигнина.

Для производства дорожных вяжущих предложено нагревать гидролизный лигнин в растворителе при температуре 310—320 °С в течение 50—60 мин при хорошем перемешивании. В качестве растворителей для этого процесса могут служить каменноугольные дорожные маловязкие дегти, смолы, нефтяные гудроны, мазут, сланцевые смолы, смолы пиролиза нефтяных фракций, отходы лавсанового производства. В зависимости от вида растворителя и его вязкости соотношение между количествами лигнина и растворителя находится в пределах от 1:2,9 до 1:7,5. Количество растворителя выбирается таким, чтобы температура размягчения продукта термопластификации была не выше 140-160 °С.

При получении лигниновых вяжущих для термопластификации лигнина используют каменноугольную смолу или жидкие каменноугольные дегти Д-1— Д-4. Лигниновые вяжущие отличаются хорошей адгезией, превосходят по этому показателю каменноугольные дегти и рекомендуются к применению в дорожных смесях для нижних и верхних слоев покрытий.

Бетоны на основе лигнино-гудронового и лигнино-смоляного вяжущих по ряду свойств превосходят асфальтобетоны (табл. 4.3). При использовании одинаковых каменных материалов бетон на лигнино-вом вяжущем обладает повышенной водоустойчивостью, меньшим значением показателя прочности при 0 °С, высокими адгезионными свойствами.

Экономическая эффективность применения лигниновых вяжущих обусловлена более низкой стоимостью исходных компонентов и повышенной долговечностью дорожных покрытий.

Имеется положительный опыт получения связующих на основе лигнина для теплоизоляционных материалов.

Значительный интерес представляет опыт получения связующих на основе технических лигносульфонатов (ЛСТ) и лигниновых отходов для производства теплоизоляционных материалов. Для изготовления теплоизоляционных материалов из вспученного перлита и других заполнителей требуется большое количество дефицитных связующих. В МИСИ им. В.В. Куйбышева было предложено использовать лигнин, переведенный в водорастворимое состояние в процессе сульфитной варки целлюлозы, в виде водного раствора лигносульфоновых кислот и их солей с примесью золы и редуцирующих веществ. Процесс конденсации лигнина ускоряется в кислой среде и при повышенных температурах. Для создания вяжущего использованы многоосновные кислоты, в частности, серная и ортофосфорная в количестве 5—20%, образующие ковалентные связи между различными частями макромолекул лигносульфонатов в процессе этерификации гидроксильных групп. Оптимальная температура отверждения составляет 220 °С. Для улучшения адгезии к наполнителю в состав связующего целесообразно вводить поверхностно-активные вещества (ГКЖ-10, ГКЖ-11). Полученный полимер обладает хорошей водостойкостью. Было установлено также, что для повышения когезионной прочности полимера целесообразно в состав вяжущего вводить олигомеры синтетических смол.

На основе лигнинового вяжущего и перлита освоено производство теплоизоляционного материала — лигноперлита.

Для получения лигноперлита было изучено вяжущее, составленное на основе лигносульфонатов марки КБЖ, ортофосфорной кислоты, фенолоспиртов, мочевино-формальдегидной смолы МФ-17, этилси-ликоната натрия (ГКЖ-10). Отверждение композиции лигносульфонатов с ортофосфорной кислотой и мочевино-формальдегидной смолой проводилось при 80 °С. Наполнителем служил невспученный перлитовый песок. Оптимальное содержание в композиции вяжущего ГКЖ-10 составляет 3—5%, олигомеров синтетических смол — 2— 15, ортофосфорной кислоты — 15—20. Изделия формовали из сырьевой омеси влажностью 15—20%. Низкая влажность дает возможность в 2—2,5 раза сократить расход топлива на производство изделий из лигноперлита в сравнении с топливоемкостью минераловатных плит повышенной жесткости на синтетическом связующем.

По физико-механическим и техническим свойствам лигноперлит не уступает эффективным теплоизоляционным материалам этого класса. Средняя плотность лигноперлитовых плит и скорлуп — 130— 250 кг/см3; предел прочности при сжатии — 0,2—1 МПа, при изгибе — 0,1—0,8; водопоглощение — 4—10% по объему; коэффициент размягчения — 0,8—0,85; морозостойкость—не менее 25 циклов, теплопроводность — 0,04—0,08 Вт/(м°С). В зависимости от содержания связующего лигноперлит относится к группам несгораемых и трудносгораемых материалов. Лигноперлит при содержании связующего не более 7% относится к несгораемым материалам, а не более 20% — к трудносгораемым. Содержание связующего в формовочной массе 5— 20%. На 1 м3 теплоизоляционного материала расходуется в среднем (кг): лигносульфонатов — 14, фенолоспиртов — 2, ГКЖ-10 — 0,8 и ор-тофосфорной кислоты — 3,2.

Плиты выпускают длиной 1, шириной 0,5, толщиной 0,04—0,06 м. Их используют в качестве теплоизоляционного слоя по профилированному металлическому настилу без устройства стяжки под рулонную кровлю, а также в 3-слойных железобетонных стеновых панелях. Установлена эффективность применения лигноперлита в качестве термовкладышей в однослойных керамзитобетонных панелях. Этот материал может служить и тепловой изоляцией оборудования при температуре до 200 °С.

Лигноперлитовые плиты изготавливают по полусухой технологии, которая включает: перемешивание связующего с перлитовым песком; формование изделий из сырьевой смеси при удельном давлении 0,2— 0,5 МПа и их тепловую обработку при 220 °С. В отличие от традиционных технологий изготовления перлитовых теплоизоляционных изделий, предусматривающих сушку до 24 ч, хорошая смачиваемость связующим поверхности перлитового песка позволяет снизить влажность сырьевой смеси и сократить продолжительность тепловой обработки до 1,5—2 ч.

Практический интерес представляет использование лигнина вместо формальдегида при получении полимеров фенолоальдегидного типа. Поликонденсацию фенола с лигнином выполняют при нагревании в присутствии серной кислоты. По основным свойствам фенол-лигниновые полимеры, изготавливаемые в виде жидких резольных и твердых новолачных смол, близки к фенолоформальдегидным. Жидкие смолы используются в производстве древесностружечных плит, слоистых пластиков и фанеры. Также из феноллигниновых смол изготавливают литьевые формы. На основе твердых смол новолачного типа могут приготавливаться пресс-порошки для получения вентиляционных решеток, электроарматуры, плитки для облицовки стен и покрытия пола.

В производстве цемента лигнин можно использовать как пластификатор сырьевого шлама и интенсификатор измельчения сырьевой смеси и цемента. Дозировка лигнина в этом случае составляет 0,2— 0,3%. Разжижающее действие гидролизного лигнина объясняется наличием в нем веществ фенольного характера, снижающих вязкость известняково-глинистых суспензий. При помоле лигнин уменьшает слипание мелких фракций материала, а также препятствует их налипанию на мелющие тела.

Характеристики

Тип файла
Документ
Размер
4,39 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6556
Авторов
на СтудИзбе
299
Средний доход
с одного платного файла
Обучение Подробнее