169285 (742322), страница 2

Файл №742322 169285 (Флуометрия в анализе объектов окружающей среды) 2 страница169285 (742322) страница 22016-08-02СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Уровни локализации могут иметь различную энергетическую глубину, т. е. могут удерживать электроны с различной силой. Мелкие уровни освобождаются уже при температуре жидкого азота, глубокие — при +300, +400°С. При постепенном нагревании предварительно возбужденного фосфора последовательно освобождаются уровни разной глубины, и интенсивность термолюминесценции то увеличивается, то уменьшается. Кривые, характеризующие зависимость яркости свечения фосфора от температуры, получили название кривых термического высвечивания. Они являются важной характеристикой кристаллофосфоров и могут быть использованы для аналитических целей.

1.5 Основные закономерности свечения, используемые в люминесцентном анализе

Закон независимости спектра люминесценции от длины волны возбуждающего света.

При возбуждении свечения различными длинами волн молекулы вещества, поглощая кванты разной величины, попадают на различные колебательные уровни возбужденного электронного состояния. Поэтому можно ожидать, что спектр люминесценции будет зависеть от длины волны возбуждающего света. Однако оказалось, что каждое вещество в конденсированном состоянии имеет совершенно определенный спектр люминесценции, который не чувствителен к изменению длины волны возбуждающего света.

Это объясняется тем, что молекулы, перешедшие в результате возбуждения на различные колебательные уровни возбужденного состояния (рис. 1), успевают за время, много меньшее, чем средняя длительность возбужденного состояния , растратить часть колебательной энергии и образовать систему возбужденных молекул, обладающих равновесным распределением колебательной энергии, определяемым температурой. Из этих вполне определенных для данной температуры состояний и происходят переходы молекул в невозбужденное состояние, сопровождающиеся излучением. Поэтому на опыте всегда наблюдается один и гот же спектр люминесценции, не зависящий от длины волны возбуждающего света.

Независимость спектра люминесценции от длины волны возбуждающего света позволяет на практике пользоваться для возбуждения широкими спектральными участками. При отсутствии вторичного поглощения оказывается возможным не обращать внимания на состав возбуждающего света, что очень сильно облегчает проведение анализа.

1.6 Закон Стокса—Ломмеля

Стоксом было сформулировано правило, согласно которому свет люминесценции всегда имеет большую длину волны по сравнению со светом, применявшимся для возбуждения. Однако во многих случаях правило Стокса не выполняется. Спектры поглощения и люминесценции многих веществ частично накладываются друг на друга. Если для возбуждения взять частоту (например, = 530·10-12 сек-1), находящуюся в области наложения спектров, то согласно правилу Стокса должна появляться лишь та часть спектра люминесценции, которая расположена по левую сторону от выбранной частоты. Однако в соответствии с законом независимости спектра люминесценции от возбуждающей длины волны в большинстве случаев наблюдается полный спектр люминесценции, имеющий целый ряд частот, превышающих частоту возбуждающего света (заштрихованная область). Таким образом, правило Стокса нарушается. Часть спектра люминесценции, состоящая из лучей с частотами, большими частоты возбуждающего света, называется антистоксовской. Ее возникновение можно объяснить наличием у излучающих молекул помимо энергии возбуждения еще определенного запаса колебательной энергии. Сумма энергий возбуждающего и колебательного квантов позволяет получать большие кванты люминесценции, обусловливающие появление антистоксовской части спектра. Ломмель уточнил правило Стокса, предложив для него следующую формулировку: спектр излучения в целом и его максимум всегда сдвинуты по сравнению со спектром поглощения и его максимумом в сторону длинных волн. Закон Стокса—Ломмеля строго выполняется для очень широкого круга веществ.

Сдвиг спектров люминесценции относительно спектров поглощения дает возможность более или менее просто отфильтровывать рассеянную часть возбуждающего света, примешивающегося к люминесценции. Это обстоятельство широко используется в практике люминесцентного анализа.

Закон Вавилова.

С. И. Вавиловым установлено, что энергетический выход люминесценции растет пропорционально длине волны возбуждающего света, затем в некотором спектральном интервале он остается постоянным, после чего в области наложения спектров поглощения и люминесценции начинает быстро падать. Падение энергетического выхода свечения происходит в антистоксовской части спектра.

Легко показать, что пропорциональность энергетического выхода длине волны возбуждающего света соответствует постоянству квантового выхода в той же спектральной области, где в излучение всегда переходит одна и та же доля возбуждающих световых квантов. С. И. Вавилов дал своему закону формулировку, согласно которой люминесценция может сохранять постоянный квантовый выход, если возбуждающая волна преобразуется в среднем в более длинную, чем она сама. Наоборот, выход люминесценции резко уменьшается при обратном преобразовании длинных волн в короткие. Закон Вавилова широко используется в люминесцентном анализе при подборе оптимальных условий проведения опыта.

1.7 Правило зеркальной симметрии спектров поглощения и люминесценции

Для широкого круга веществ (растворов красителей, ряда ароматических и многих других соединений) выполняется установленное В. Л. Левшиным правило зеркальной симметрии спектров поглощения и излучения, согласно которому спектры поглощения и люминесценции, изображенные в функции частот, оказываются зеркально-симметричными относительно прямой, проходящей перпендикулярно оси частот через точку пересечения обоих спектров, т. е.

(6)

или

(7)

Здесь П — частота поглощаемого света; Л — симметричная частота люминесценции; 0 — частота линии симметрии. При этом по оси ординат для спектров поглощения откладываются коэффициенты поглощения , а для спектров люминесценции — квантовые интенсивности IКВ=I/.

Из уравнения (9) видно, что при наличии зеркальной симметрии =П - Л, и П связаны линейной зависимостью. Если откладывать по оси абсцисс П, а по оси ординат , то при строгом выполнении правила должна получиться прямая линия.

Для осуществления зеркальной симметрии необходимо выполнение двух условий — зеркальной симметрии частот и зеркальной симметрии интенсивностей поглощения и люминесценции в соответствующих частях спектра.

Для осуществления симметрии частот необходимо, чтобы энергетические уровни возбужденного и невозбужденного состояний были построены одинаково. Для наличия зеркальной симметрии интенсивностей необходимо, чтобы распределение молекул по энергетическим уровням верхней и нижней систем было одинаковым и чтобы вероятности соответствующих излучательных и поглощательных переходов были равны, или пропорциональны друг другу. Эти условия выполняются лишь у части молекул. У веществ, следующих правилу зеркальной симметрии, можно по одному из спектров (люминесценции или поглощения) без измерений установить форму другого. Отступления от правила зеркальной симметрии могут быть использованы для установления величины отклонений от условий его выполнения.

Правило зеркальной симметрии оказывается весьма полезным при проведении люминесцентного анализа, а также при расшифровке спектров и установлении энергетических уровней исследуемых молекул.

1.8 Виды люминесцентного анализа и характеристика его особенностей

Люминесцентным анализом называется обнаружение и исследование различных объектов с помощью явлений люминесценции. Наиболее важной задачей люминесцентного анализа является определение химического состава исследуемых веществ и установление процентного содержания в них отдельных компонентов. Анализ такого вида носит соответственно название качественного и количественного химического люминесцентного анализа.

Качественный химический люминесцентный анализ основан на том, что люминесцентные свойства являются характерным признаком излучающего вещества, тесно связанным с его составом, общим состоянием и структурой его молекул.

Количественный химический люминесцентный анализ основан на использовании определенной зависимости между интенсивностью люминесценции и концентрацией люминесцентного вещества. В большинстве случаев условия анализа подбираются так, чтобы осуществлялась пропорциональность между интенсивностью свечения и концентрацией вещества. Однако такая зависимость имеет место лишь в случаях, когда концентрации невелики. При высоких концентрациях определяемого вещества для осуществления анализа приходится тем или иным способом учитывать сложную зависимость интенсивности свечения от концентрации.

К люминесцентному анализу относится также изучение структуры и колебательных частот молекул по спектрам излучения, создающее фундамент для качественного люминесцентного анализа.

Чисто химические задачи не исчерпывают возможностей люминесцентного анализа. С его помощью можно обнаруживать и выявлять различные объекты и их детали, изучение которых оказывается невозможным при обычных условиях наблюдения и освещения. Люминесцентный анализ такого рода получил название люминесцентного анализа обнаружения или сортового люминесцентного анализа.

В то время как при химическом и эмиссионном спектральном анализе анализируемые вещества разлагаются, при люминесцентном анализе они, как правило, не подвергаются изменениям и их можно использовать в дальнейшей работе. Это преимущество люминесцентного анализа особенно существенно при исследовании трудно синтезируемых уникальных веществ, получаемых в ничтожных количествах. В отдельных случаях возбуждения люминесценции коротковолновыми ультрафиолетовыми лучами в веществе могут происходить фотохимические превращения. Однако соответствующим подбором условий опыта эти трудности обычно могут быть обойдены.

Перечисленные свойства люминесцентного анализа дают представление о его исключительных возможностях, в определенных отношениях значительно превосходящих возможности других видов анализа. Однако следует отметить, что необычайно высокая чувствительность люминесцентного анализа одновременно создает и серьезные трудности его проведения, существенно ограничивая области его применения. Присутствие в образце даже ничтожных количеств люминесцирующих примесей обусловливает появление нового свечения, которое накладывается на люминесценцию основного вещества, искажая как спектральный состав, так и интенсивность его излучения. Поэтому значительные успехи в применении люминесцентного анализа могли быть достигнуты лишь на основе всестороннего развития учения о люминесценции в целом, после того как были установлены общие законы свечения и накоплен большой материал о люминесцентных свойствах различных классов соединений.

Наиболее распространенным и хорошо разработанным является люминесцентный анализ, основанный на возбуждении фотолюминесценции. При анализе кристаллических неорганических веществ (минералов, алмазов и др.) применяют катодное и рентгеновское возбуждения. В отдельных случаях в аналитических целях используют явления хемилюминесценции и радиолюминесценции.

1.9 Рентгенофлуоресцентный метод

Метод основан на зависимости интенсивности рентгеновской флуоресценции от концентрации элемента в образце. При облучении образца мощным потоком излучения рентгеновской трубки возникает характеристическое флуоресцентное излучение атомов, которое пропорционально их концентрации в образце. Излучение разлагается в спектр при помощи кристалл-анализаторов, далее с помощью детекторов и счетной электроники измеряется его интенсивность. Математическая обработка спектра позволяет проводить количественный и качественный анализ.

1.10 Рентгеновская флуоресценция

Когда атомы образца облучаются фотонами с высокой энергией - возбуждающим первичным излучением рентгеновской трубки, это вызывает испускание электронов. Электроны покидают атом. Как следствие, в одной или более электронных орбиталях образуются "дырки" - вакансии, благодаря чему атомы переходят в возбужденное состояние, т.е. становятся нестабильны. Через миллионные доли секунды атомы возвращаются к стабильному состоянию когда вакансии во внутренних орбиталях заполняются электронами из внешних орбиталей. Такой переход сопровождается испусканием энергии в виде вторичного фотона - этот феномен и называется "флуоресценция''. Энергия вторичного фотона находится в диапазоне энергий рентгеновского излучения, которое располагается в спектре электромагнитных колебаний между ультрафиолетом и гамма-излучением.

Различные электронные орбитали обозначаются K, L, M и т.д., где К – орбиталь, ближайшая к ядру. Каждой орбитали электрона в атоме каждого элемента соответствует собственный энергетический уровень. Энергия испускаемого вторичного фотона определяется разницей между энергией начальной и конечной орбиталей, между которыми произошел переход электрона.

Длина волны испускаемого фотона связана с энергией формулой E = E1-E2 = hc/l , где E1 и E2 – энергии орбиталей, между которыми произошел переход электрона, h – постоянная Планка, с - скорость света, l - длина волны испускаемого(вторичного) фотона. Таким образом, длина волны флуоресценции является индивидуальной характеристикой каждого элемента и называется характеристической флуоресценцией. В то же время интенсивность (число фотонов, поступающих за единицу времени) пропорциональна концентрации (количеству атомов) соответствующего элемента. Это дает возможность элементного анализа вещества: определение количества атомов каждого элемента, входящего в состав образца.

Характеристики

Тип файла
Документ
Размер
6,22 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6447
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее