168952 (742183), страница 2

Файл №742183 168952 (Переработка твёрдых отходов) 2 страница168952 (742183) страница 22016-08-02СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

В практике рекуперации твердых отходов промышленности используют различные методы обогащения перерабатываемых материалов, подразделяемые на гравитационные, магнитные, электрические, флотационные и специальные.

3.1 Гравитационные методы

Гравитационные методы обогащения основаны на различии в скорости падения в жидкой (воздушной) среде частиц различного размера и плотности. Они объединяют обогащение отсадкой, в тяжелых суспензиях, в перемещающихся по наклонным поверхностям потоках, а также промывку.

Отсадка представляет собой процесс разделения минеральных зерен по плотности под действием переменных по направлению вертикальных струй воды (воздуха), проходящих через решето отсадочной машины. Отсадке обычно подвергают предварительно обесшламленные материалы оптимальной крупности (0,5-100 мм для нерудных и 0,2-40 мм для рудных материалов). При отсадке крупного материала находящийся на решете слой толщиной в 5-10 диаметров наибольших частиц в подаваемом на переработку материале (питании) называют постелью. При отсадке мелкого материала ( до 3-5 мм) на решете укладывают искусственную постель из крупных тяжелых частиц материала, размер которых в 3-4 раза превышает размер наиболее крупных частиц питания. В процессе отсадки материал расслаивается: в нижнем слое концентрируются тяжелые частицы, в самом верхнем – легкие мелкие. Получаемые слои разгружают раздельно.

Отсадочные машины различаются способом создания пульсаций (движением диафрагмы, поршня, решета, пульсирующей подачей сжатого воздуха), типоразмерами, конструктивными особенностями, числом фракций выделяемых продуктов. Их производительность может быть определена по формуле:

Q=3600срBHт, (4)

где ср – средняя насыпная плотность материала постели, т/м3; В – ширина отсадочного отделения, м; т - средняя скорость продольного перемещения материала в машине, м/с.

Обогащение в тяжелых суспензиях и жидкостях. Этот процесс заключается в разделении материалов по плотности в гравитационном или центробежном поле в суспензии или жидкости, плотность которой является промежуточной между плотностями разделяемых частиц.

Тяжелые суспензии представляют собой взвешенные в воде тонкодисперсные частицы тяжелых минералов или магнитных сплавов – утяжелителей, в качестве которых используют ферросилиций, пирит, пирротин, магнетитовый и гематитовый концентраты и другие материалы крупностью до 0,16 мм. В качестве тяжелых жидкостей используют растворы хлоридов кальция и цинка, тетрахлорида углерода, тетрабромэтана, хлорного олова и других соединений.

Для поддержания устойчивости суспензии в нее добавляют глину (до 3% от массы утяжелителя) или применяют смесь порошков утяжелителей различной плотности.

Наиболее распространенными аппаратами обогащения в тяжелых средах являются барабанные, конусные, колесные и гидроциклонные сепараторы.

Обогащение в потоках на наклонных поверхностях. Эти процессы включают обогащение на концентрационных столах, а также в струйных сепараторах, шлюзах и подшлюзах, в винтовых сепараторах и шлюзах.

Обогащение на концентрационных столах характеризуется разделением минеральных частиц по плотности в тонком слое воды, текущей по наклонной плоской деке стола, совершающей возвратно-поступательные горизонтальные движения перпендикулярно направлению движения воды.

Деки бывают трапециевидной и прямоугольной формы. На части поверхности дек в продольном направлении закрепляют параллельно располагаемые рифли (планки переменной высоты и длины), длина которых увеличивается от верхнего к нижнему краю стола – краю разгрузки легких продуктов. Пульпу разделяемого материала подают в верхний угол поверхности стола (деки). Питание деки смывной водой ведут с ее верхнего края, ниже места ввода пульпы. Частицы разделяемого материала большей плотности оседают в межрифленных пространствах и под действием колебаний наклонной деки продвигаются вдоль рифлей, достигая нерифленой части деки, где образуют веер частиц различной плотности, удаляемых раздельно. Неоседающие частицы меньшей плотности переносятся смывным потоком через рифли; их в виде раздельных продуктов отводят с поверхности концентрационного стола.

Более эффективно разделение предварительно классифицированных материалов. Оптимальное отношение длины деки L к ее ширине S определяется крупностью обогащаемых материалов. Концентрационные столы изготовляют в промышленном, полупромышленном и лабораторном исполнении в одно- и многоярусном вариантах с деками трех видов: песковые с L/S2,5 для материалов крупностью d>1 мм, мелкопесковые (L/S=1,8; d=0,2-1 мм), шламовые (L/S1,5; d<0,2 мм).

К основным регулируемым технологическим параметрам обогащения на столах относят число n ходов деки стола в минуту и оптимальную длину l (в мм) хода, определяемые по выражениям:

n=250/ , (5)

l=18 , (6)

где dмакс – размер частиц, равный размеру сита, на котором остаток материала составляет 5%.

Обогащение на винтовых сепараторах и шлюзах происходит, как и на столах, в небольшой толщины (6-15 мм) потоке пульпы разделяемых материалов, подаваемой в верхнюю часть наклонного желоба. Винтовые сепараторы представляют собой неподвижные вертикальные винтообразные желоба с поверхностью специального профиля. Тяжелые частицы пульпы сосредоточиваются в желобе ближе к вертикальной оси его витков и разгружаются посредством отсекателей в соответствующие приемники. Легкие частицы концентрируются у периферийной части желоба и разгружаются в нижней части сепаратора.

Струйные сепараторы снабжены суживающимся к нижнему концу и устанавливаемым под углом 15—20° жело­бом или конусом. Пульпу (содержание твердого 50—60%) за­гружают в верхнюю часть желоба. Сокращение расстояния между стенками желоба от загрузочного конца к разгрузочно­му приводит к увеличению высоты потока от 1,5—2 до 7—12 мм. Частицы большей плотности концентрируются в нижних слоях потока, а меньшей плотности сосредоточиваются в верхних его слоях. Разделенные потоки частиц поступают в отдельные при­емники. Производительность этих аппаратов определяется крупностью и минеральным составом обрабатываемого мате­риала и обычно составляет 0,9—5,5 т/ч на 1 м2 рабочей площа­ди желоба. Их можно использовать и для классификации (на­пример, строительного песка).

Шлюзы характеризуются наличием наклонных (3—15°) лотков с укрепленными на их дне трафаретами (бруски, уголки, профилированные ков­рики, панцирные сетки, ткань) для задержания тяжелых частиц подаваемой в верхнюю часть лотка пульпы перерабатываемого материала. Эти аппараты мо­гут быть неподвижными и подвижными, глубокого (высота по­тока до 0,4 м для переработки материалов крупностью от 20 до 100 мм и более) и мелкого (высота потока до 0,05 м для материалов крупностью до 20 мм) заполнения. Аппараты мел­кого заполнения называют подшлюзками. Легкие частицы пульпы уносятся потоком через трафареты, частицы большей плотности депонируются в межтрафаретных пространствах, после заполнения которых при прекращенной подаче пульпы производят их промывку водой с последующим смывом кон­центрата в приемник.

Ширина шлюзов обычно составляет 0,5—1,5 м, длина 6—-20 м.

Промывка. Для разрушения и удаления глинистых, песчаных и других минеральных, а также органических примесей твердых отходов часто используют процессы их промывки (отмывки), которые проводят в промывочных машинах разнообразной конструкции (гидромониторы, барабанные грохоты, бутары, вращающиеся скрубберы, корытные мойки, аппараты автоклавного и других типов). В качестве промывочного агента наиболее часто используют воду (в ряде случаев с добавками ПАВ), иногда применяют острый пар и различные растворители.

3.2 Магнитные методы

Магнитное обогащение используют для отделения парамагнитных (слабомагнитных) и ферромагнитных (сильномагнитных) компонентов (веществ с удельной магнитной восприимчивостью выше 10-7 м3/кг) смесей твердых материалов от их диамагнитных (немагнитных) составляющих. Сильномагнитными свойствами обладают магнетит (FeO·Fe2O3), маггелит (Fe2O3), ферросилиций и некоторые другие вещества. Ряд оксидов, гидроксидов и карбонатов железа, марганца, хрома и редких металлов относится к материалам со слабомагнитными свойствами. Различные породообразующие минералы (кварц, полевые шпаты, кальцит и т. п.) относятся к немагнитным материалам.

Слабомагнитные материалы обогащают в сильных магнитных полях (напряженностью Н около 800-1600 кА/м), сильномагнитные – в слабых полях (Н70-160 кА/м). Магнитные поля промышленных сепараторов бывают в основном постоянными или переменными, комбинированные магнитные поля применяют реже.

Подлежащие магнитной сепарации материалы как правило подвергают предварительной обработке (дробление, измельчение, грохочение, обесшламливание, магнетизирующий обжиг и др.). Обычно магнитное обогащение материалов крупностью 3-50 мм проводят сухим способом, материалов мельче 3 мм – мокрым. Технология магнитной сепарации зависит прежде всего от состава подлежащего переработке материала и определяется типом используемых сепараторов. Последние обычно снабжены многополюсными открытыми или закрытыми магнитными системами, создающими различные типы магнитных полей, различаются способами питания (верхняя или нижняя подача материала), транспорта продуктов обогащения (барабанные, валковые, дисковые, ленточные, роликовые, шкивные сепараторы), характером движения обрабатываемого потока и эвакуации магнитных компонентов (прямоточные, противоточные, полупротивоточные) и другими особенностями.

Эвакуируемые из магнитного поля зерна сильномагнитных материалов вследствие остаточной намагниченности могут агломерироваться в разного вида агрегаты. С целью устранения последствий этого явления, называемого магнитной флокуляцией, используют многократное перемагничивание таких материалов в переменном магнитном поле размагничивающих аппаратов.

В процессах переработки твердых отходов широкое применение находят электромагнитные железоотделители (шкивные, подвесные, саморазгружающиеся сепараторы), предназначенные для извлечения железных и других ферромагнитных предметов из разрыхленных немагнитных материалов.

3.3 Электрические методы

Электрическое обогащение основано на различии электрофизических свойств разделяемых материалов и включает сепарацию в электростатическом поле, поле коронного разряда, коронно-электростатическом поле и трибоадгезионную сепарацию. С их помощью решают задачи обогащения, классификации и обеспыливания как рудного сырья, так и многих неметаллических материалов (тонкодисперсного кварца, формовочных песков, известняка и др.).

Электростатическая сепарация основана на различии электропроводности и способности к электризации трением (трибоэлектрический эффект) минеральных частиц разделяемой смеси. При контакте частиц обогащаемого материала с поверхностью заряженного металлического электрода всем сообщается одноименный с ним заряд, величина которого зависит от электропроводности частиц. Электропроводные частицы интенсивно приобретают значительный заряд и отталкиваются от электрода, частицы диэлектрика сохраняют свои траектории.

Сепарация в поле коронного разряда, создаваемого между коронирующим (заряженным до 20-50 тыс. В и более) и осадительным (заземленным) электродами, основана на ионизации пересекающих это поле минеральных частиц оседающими на них ионами воздуха и на различии интенсивности передачи приобретенного таким образом заряда частицами проводников, полупроводников и диэлектриков поверхности осадительного электрода. Эти различия выражаются в различных траекториях движения частиц.

Трибоадгезионная сепарация основана на различии в адгезии (прилипании) к поверхности наэлектризованных трением частиц разделяемого материала. Температура процесса сепарации существенно влияет на силу адгезии, которая усиливается или ослабляется электрическими силами, вызываемыми трибоэлектрическими зарядами. Помимо этого, на частицы действуют силы тяжести и центробежные силы, что в совокупности приводит к разделению частиц по вещественному составу и крупности. Подлежащие электрической сепарации материалы обычно подвергают подготовительным операциям (классификации, обесшламливанию, сушке, термообработке при температурах до 300 ˚С). Наиболее эффективно идет процесс сепарации при крупности частиц не более 5 мм.

4 ФИЗИКО-ХИМИЧЕСКОЕ ВЫДЕЛЕНИЕ КОМПОНЕНТОВ ПРИ УЧАСТИИ ЖИДКОЙ ФАЗЫ

4.1 Выщелачивание (экстрагирование)

Этот метод широко используется в практике переработки отвалов горнодобывающей промышленности, некоторых металлургических и топливных шлаков и многих других ВМР. Метод основан на извлечении одного или нескольких компонентов из комплексного твердого материала путем его избирательного растворения в жидкости-экстрагенте.

При выборе экстрагента (растворителя) к нему предъявляют ряд требований в отношении селективности, величины коэффициента диффузии, плотности, горючести, коррозионной активности, токсичности и ряда других показателей. На процесс выщелачивания обычно существенное влияние оказывают такие параметры как концентрация экстрагента, размер и пористость зерен обрабатываемого материала, температура, наложение различных силовых полей.

Процессы экстракции могут быть периодическими и непрерывными. Периодические процессы проводят настаиванием (обработкой залитого экстрагентом материала в течение определенного времени с последующим сливом экстрагента и заменой его свежим) или вытеснением – перколяцией (образующийся экстракт вытесняется из слоя материала чистым растворителем). Более прогрессивное непрерывное экстрагирование проводят путем многоступенчатого контакта прямоточным, противоточным и комбинированным способами.

4.2 Растворение

Этот метод заключается в реализации гетерогенного взаимодействия между жидкостью и твердым веществом, сопровождаемого переходом последнего в раствор, и широко используется в практике переработки многих твердых отходов.

Процессы растворения осуществляют в аппаратах периодического действия (в стационарном слое твердых частиц или с перемешиванием) и непрерывного действия (во взвешенном слое или с перемешиванием).

4.3 Кристаллизация

Метод заключается в выделении твердой фазы в виде кристаллов из насыщенных растворов, расплавов или паров. Создание необходимого для кристаллизации пересыщения раствора обеспечивают двумя основными приемами – охлаждением горячих насыщенных растворов (изогидрическая кристаллизация) и удалением части растворителя путем выпаривания (изотермическая кристаллизация) или их комбинацией (вакуумная кристаллизация, фракционированная кристаллизация, кристаллизация с испарением растворителя в токе воздуха или другого газа-носителя). Наряду с ними иногда используют кристаллизацию высаливанием (введение в раствор веществ, понижающих растворимость соли), вымораживанием (охлаждением растворов до отрицательных температур с выделением кристаллов соли или их концентрирование удалением части растворителя в виде льда), также используют кристаллизацию за счет химической реакции, обеспечивающей пересыщение раствора, применяют высокотемпературную (автоклавную) кристаллизацию, обеспечивающую возможность получения кристаллогидратов с минимальным содержанием кристаллизационной влаги.

Характеристики

Тип файла
Документ
Размер
3,74 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее