168741 (742087), страница 3
Текст из файла (страница 3)
Як показали дослідження, вміст сумарного неорганічного вуглецю в океані в 1983 році більш, ніж в 50 разів перевищувало вміст
в атмосфері. Крім того, в океані знаходяться значні кількості розчиненого органічного вуглецю. Вертикальний розподіл
не є однорідним, його концентрації в глибинних шарах океану вище, ніж в поверхневих. Спостерігається також збільшення концентрації
від досить низьких значень в глибинних водах Північного Льодовитого океану до більш високих значень в глибинних водах Атлантичного океану, до ще більш високим в Південному і Індійському океанах до максимальних в Тихому океані. Вертикальний розподіл лужності дуже схоже на розподіл
, проте межі змін лужності значно менше і складають приблизно 30% змін
. Цікаво відзначити, що поверхневі концентрації
були б на приблизно на 15% вище, якби океани були добре перемішані, що у свою чергу означало б, що концентрація
в атмосфері повинна бути близько 700 млн.
Наявність вертикальних градієнтів
(так само як і лужності) в океанах робить істотний вплив на концентрації атмосферного
.
5.2 Фотосинтез, розкладання і розчинення органічної речовини
Діяльність морської біоти практично повністю обмежена поверхневими шарами океану, де відбувається інтенсивний фотосинтез у фотичній зоні і бактеріальне розкладання, яке зосереджене головним чином також у верхньому стометровому шарі океану. Мабуть, тільки біля 10% первинної продукції у вигляді мертвої органіки в основному у формі фекальних пелет і залишків організмів досягає більш глибоких шарів океану, і, ймовірно, біля 1% цієї речовини відкладається на океанічному дні. Повна первинна продуктивність океану складає біля
г С/год, але швидкість фотосинтезу на одиницю площі значно змінюється: від 0,5 г
С/( м
сутки) і більш в зонах інтенсивного апвелінга до менш 10% цього значення в пустинних областях океану, які характеризуються даунвелінгом і недоліком поживних речовин. Фотосинтез залежить від доступної кількості поживних речовин. Скрізь, де достатньо світла, поживні речовини витрачаються швидко. Відсутність азоту і фосфору частіше за все лімітує швидкість утворення первинної продукції. Проте у високих широтах, особливо в Південному океані, наявність порівняльно великих концентрацій як азоту, так і фосфору в поверхневих водах вказує на те, що якийсь інший чинник (ймовірно, освітленість) лімітує первинну продуктивність.
В процесі утворення первинної продукції, що включає як органічні, так і неорганічні сполуки вуглецю, концентрація
зменшується. Вплив цього процесу на лужність може бути різним. Кожний використаний при утворенні органічної речовини мікроміль вуглецю збільшує лужність приблизно на 0,16 мкекв, а коли вуглець використовується для утворення
, вона зменшується на 2 мкекв. Таким чином, відмінності в просторовому розподілі
і лужності містять інформацію про відносні значення продукції і розкладання або розчинення органічної і неорганічної речовини в океані. Поза сумнівом, що збільшення концентрації атмосферного
створює потік
з атмосфери в океан, який у свою чергу повинен був змінити доіндустріальний розподіл
у верхніх шарах океану.
5.3
С в океані
Розподіл
в розчиненому неорганічному вуглеці у всіх океанах був одержаний в ході експедицій за програмою GEOSECS в 1972-1978 роках. Виявилося, що максимальні значення концентрації
в поверхневих водах океану припали на початок 1970-х років. Є також невелике число даних (в основному для глибинних шарів океану) про значення концентрації
в розчиненому органічному вуглеці. Вони виявилися дуже низькими. Це дає підставу вважати, що органічний вуглець в основному складається із стійких з’єднань. Речовини (такі, як цукор і білки), що легко окисляються, є важливим джерелом енергії.
5.4 Донні осідання океану
Щорічно біля
г С відкладається на дні океану, частина цих відкладень є органічним вуглецем, а інша частина -
. Органічний вуглець є основним джерелом енергії для організмів, що мешкають на дні моря, і лише мала його частина зберігається в осіданнях, виняток становлять прибережні зони і шельфи. В деяких обмежених областях (наприклад, в деяких районах Балтійського моря) вміст кисню в придонних водах може бути дуже низьким, відповідно зменшується швидкість окислення і значні кількості органічного вуглецю осяідають. Області з безкисневими умовами збільшуються внаслідок забруднення прибережних вод, і останніми роками, ймовірно, кількість органічної речовини, що легко окислюється, також збільшилася. Вище лізокнина океанічні води пересичені по відношенню до
, рівень лізокнина в Атлантичному океані розташований на глибині 4000 м, а в Тихому - всього лише на глибині 1000 м. Над лізокнином не відбувається ніякого помітного розчинення
, тоді як на великих глибинах його розчинення приводить до зменшення випадання в осад, а нижче за глибину карбонатної компенсації осадження
не відбувається зовсім. Оскільки товщина верхнього осадового шару, в якому відбувається перемішування опадів організмами, що живуть на дні океану (біотурбація), складає приблизно 10 см,
Вміст ізотопу
в океанічних осіданнях досить швидко зменшується з глибиною, що дає можливість визначити швидкість осадонакопичення (вона значно змінювалася з часу останнього заледеніння). Проте повний вміст
в осіданнях малий в порівнянні з його вмістом в атмосфері, біосфері і океанах.
5.5 Процеси перенесення в океанах
Унаслідок буферних властивостей карбонатної системи, зміна концентрації
розчиненого сумарного неорганічного вуглецю в морській воді, необхідне для досягнення стану рівноваги з зростаючою концентрацією атмосферного вуглекислого газу, мало, і рівноважний стан між атмосферним і розчиненим в поверхневих водах
встановлюється швидко. Роль океану в глобальному вуглецевому циклі визначається головним чином швидкістю обміну вод в океані.
Поверхневі шари океану досить добре перемішані аж до верхньої межі термокліна, тобто до глибини близько 75 м в області широт приблизно 45
с. - 45
ю. В більш високих широтах зимове охолоджування вод приводить до перемішування до значно великих глибин, а в обмежених областях і протягом коротких інтервалів часу перемішування вод розповсюджується до дна океанів (як, наприклад, в Гренландському морі і морі Уедделла). Крім того, з областей основних течій в широтному поясі 45-55
(Гольфстрім в Північній Атлантиці, Куросіо в північній частині Тихого океану і Антарктична течія) відбувається великомасштабне перенесення холодних поверхневих вод в область головного термокліна (глибина 100-1000 м). В шарі термокліна відбувається також вертикальне перемішування. Обидва процеси грають важливу роль при перенесенні вуглецю в океані.
Між вуглекислим газом в атмосфері і розчиненим неорганічним вуглецем в поверхневих шарах морської води рівновага встановлюється приблизно протягом року (якщо нехтувати сезонними змінами). Розчинений неорганічний вуглець переноситься разом з водними масами з поверхневих вод в глибинні шари океану. При русі водної маси його вміст звичайно зростає за рахунок надходження вуглекислого газу при розкладанні і розчиненні детриту, що опускається з поверхневого шару океану. Виникаюче в результаті збільшення вмісту сумарного розчиненого неорганічного вуглецю можна обчислити, беручи до уваги супутнє зростання вмісту поживних речовин і лужності. Проте, у такий спосіб не можна достатньо точно визначити значення концентрації
для часу, коли відбувалося утворення глибинних вод. Як було відзначено раніше, стаціонарний розподіл
в океанах забезпечує зразковий баланс між перенесенням, направленим в глибину (потік детриту), і перенесенням, направленим до поверхні (перемішування і апвелінг з глибоких шарів з великими
концентраціями ). При поглинанні
антропогенного океаном потік
розчиненого неорганічного вуглецю з глибинних шарів до поверхневих зменшується через підвищення концентрації в поверхневих
Автори статті, використаної як основа для написання даної роботи, проаналізували деякі з цих можливих чинників і показали, що за певних умов в поверхневих шарах океану можуть спостерігатися більш низькі значення концентрацій розчиненого неорганічного вуглецю в порівнянні з сучасними, відповідно концентрації атмосферного
будуть також іншими. Цю вуглецевого циклу в океані можна відзначити як можливий механізм збільшення направленого вниз потоку вуглецю у випадку, якщо б потепління у високих широтах викликало зменшення площі морського крижаного покриву. Це механізм негативного зворотного зв’язку між вуглецевим циклом і кліматичною системою, тобто підвищення температури в атмосфері повинне привести до збільшення поглинання
океаном і зменшенню швидкості росту
в атмосфері.
При оцінках можливих значень концентрацій атмосферного
в майбутньому звичайно рахують, що загальна циркуляція океанів не буде змінюється. Проте безперечно, що у минулому вона мінялася. Якщо потепління, викликане зростанням концентрації
в атмосфері, буде значним, то, ймовірно, відбудеться якась зміна циркуляції океану. Зокрема, може зменшитися інтенсивність утворення холодних глибинних вод, що у свою чергу може привести до зменшення поглинання антропогенного
океаном.
Зміна кругообігу вуглецю могла б відбутися також при збільшенні сумарної кількості поживних речовин в океані. Якщо наявність поживних речовин в поверхневих шарах як і раніше буде основним чинником, лімітуючим фотосинтез, їх концентрації в цих шарах повинні бути дуже низькими. Отже, повинен збільшиться вертикальний градієнт концентрації поживних речовин між збідненими цими речовинами поверхневими водами і глибинними шарами. В цьому випадку за рахунок вертикального перемішування в океані в поверхневі шари переноситиметься більше поживних речовин, що приведе до зростання інтенсивності фотосинтезу, і, отже, збільшенню потоку детриту в глибинні шари океану. Вертикальний градієнт концентрації
також зросте, а поверхневі значення
і парціальний тиск
при цьому зменшаться.
Брокер проаналізував можливі механізми, які могли б грати істотну роль при переході від льодового періоду до міжльодового, особливо підкресливши роль фосфатів. Дія цих механізмів могла б пояснити досить низькі концентрації вуглекислого газу в атмосфері, які мали місце в кінці льодовикової епохи, і високі концентрації
в атмосфері в більш теплий період часу. Показано, що складні вторинні механізми можуть вносити свій внесок в можливі зміни концентрації атмосферного
протягом найближчі 100 років, крім безпосередньої дії антропогенних викидів
.















