166409 (740245), страница 2

Файл №740245 166409 (Критический объем и плотность веществ, их прогнозирование) 2 страница166409 (740245) страница 22016-08-02СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

В данном примере рассматривается область P-V-T пространства, где сосуществуют пар и жидкость. Для этой области уравнение Ван-дер-Ваальса имеет три действительных решения (дискриминант уравнения (6.5) меньше нуля). При использовании формул Кардано в оригинальном виде корни уравнения выражаются через комплексные величины. Избежать этого можно, если ввести следующие обозначения:

, .(6.7)

Тогда решениями приведенного уравнения (6.5) будут

;(6.8)

;(6.9)

,(6.10)

от которых заменой

(6.11)

снова можно перейти к решениям кубического уравнения (6.4).

3. Вычислим характеристические константы уравнения Ван-дер-Ваальса. Для удобства вычислений примем следующие единицы измерения: V - л/моль , P - атм, Т - К. Тогда R = 0,08206 л·атм/(моль·К);

a = 27·0,082062·6502/(64·31)=38,72 л·атм;

b = 0,08206·650/(8·31)=0,2151 л.

4. Давление насыщения находится методом последовательных приближений. В качестве первого приближения при Т = 400 К примем давление насыщения равным 10 атм.

5. Рассчитаем значения коэффициентов уравнения (6.4):

= –(0,2151+0,08206·400/10) = – 3,4975;

= 38,72/10 = 3,872;

= – (38,72·0,2151/10) = – 0,8329.

6. Далее вычислим коэффициенты приведенного кубического уравнения (6.5) и значение дискриминанта D:

= [3·3,872–(–3,4975)2]/3 = – 0,2055;

= 2·(–3,4975)3/27–(–3,4975·3,872)/3+(–0,8329)=0,5121;

= (–0,2055/3)3+(0,5121/2)2 = 0,0652.

Значение дискриминанта (D) получилось положительным, что говорит о единственном действительном решении уравнения (6.5). Следовательно, значение давления выбрано неверно.

7. Предположим, что давление насыщения равно 1 атм. Повторим вычисления в пунктах 5 и 6.

= –(0,2151+0,08206·400/1) = –33,04;

= 38,72/1 = 38,72;

= –(38,72·0,2151/1) = –8,329;

=[3·38,72 –(–33,04)2]/3 = –325,2;

= 2·(–33,04)3/27 –(–33,04·38,72)/3+(–8,329) = –2254;

= (–325,2/3)3+(–2254/2)2 = –3632.

Значение D отрицательное, следовательно, уравнение имеет три действительных решения.

8. Найдем эти решения, но прежде вычислим вспомогательные величины и 

= [–(–325,2)3/27]1/2 = 1129;

= –(–2254)/(2·1129) = 0,9982;

= arccos (0,9982) = 0,0600 радиан;

= 2·(1129)1/3·cos(0,0600/3) = 20,82;

= 2·(1129)1/3 cos(0,0600/3 + 2·3,14/3) = –10,75;

= 2·(1129)1/3 cos (0,0600/3 + 4·3,14/3) = –10,09.

9. Перейдем к решениям уравнения (6.4), воспользовавшись (6.11).

= 20,82 –(–33,04/3) = 31,8 л/моль;

= –10,75 –(–33,04/3) = 0,263 л/моль;

= –10,09 –(–33,04/3) = 0,923 л/моль.

При 400 К и 1 атм объем пара (V1) составляет 31,8 л/моль, объем жидкости (V2) – 0,263 л/моль. V3 = 0,923 – третий корень уравнения, не имеющий физического смысла.

10. Вычислим значение левой части выражения (6.3), для этого имеются все необходимые величины:

= 0,08206·400 ln[(31,8–0,2151)/

/(0,263– 0,2151)] + 38,72·(1/31,8–1/0,263)–1·(31,8–0,263) = 35,53.

При избранном давлении (1 атм ) выражение (6.3) в тождество не обращается, т.е. левая и правая части не равны друг другу. Необходимо принять другое значение давления насыщения.

В пунктах 5-10 вычисления производились с округлением промежуточных величин на каждом шаге вычислений до значений, записанных в формулах. Далее приводятся результаты вычислений с точностью в 16 десятичных разрядов, и округление выполнено только при представлении окончательных величин.

11. Примем Psat = 3 атм. Повторим вычисления в пунктах 5-10. При 400 К и 3 атм объем пара составляет 9,878 л/моль, объем жидкости – 0,282 л/моль. Левая часть выражения (6.3) равна = 1,0515. Тождество не выполняется, но степень отклонения от него существенно уменьшилась.

12. Подбор давления насыщения следует продолжить. Теперь имеется два значения для левой части выражения (6.3) при соответствующих давлениях. Используя эти величины, можно оценить значение давления для следующего расчета путем линейной интерполяции.

= 1–(1–3)/(35,53–1,0515)·35,53 = 3,061 атм.

13. Повторим вычисления (пункты 5-12) для Psat = 3,061 атм. Получим:

= 9,658 л/моль; = 0,282 л/моль; = 0,473. Новое значение давления – 3,111 атм.

После 5 итераций, исключая расчет при Psat = 10 атм, имеем:

T = 400 K; P sat = 3,112 атм; = 9,480 л/моль; = 0,282 л/моль; = 8,7·10-5. Полученные значения давления и объемов жидкости и пара соответствуют условиям насыщения.

14. Результаты расчета для других температур приведены в табл. 6.3.

Таблица 6.3

Т, К

Psat, атм

, л/моль

, л/моль

400

3,112

0,282

9,480

500

9,888

0,322

3,235

600

22,328

0,410

1,322

640

29,127

0,515

0,850

15. Область метастабильных (пересыщенных) состояний пара и жидкости занимает пространство между бинодалью и спинодалью. Точки на изотермах, принадлежащие бинодали, определены выше, и их значения приведены в табл. 6.3.

Для определения конфигурации спинодали воспользуемся соотношением

,

т.е. условиями экстремальности для соответствующих точек изотермы. Далее продифференцируем уравнение Ван-дер-Ваальса по объему (при Т = const) и преобразуем полученное выражение к полиному по V. Получим кубическое уравнение (6.12), корни которого могут быть найдены изложенным выше способом (п.п. 5-9):

.(6.12)

16. Для 400 К имеем следующие значения коэффициентов уравнения (6.12):

= –[2·38,72/(0,08206·400)] = –2,3593;

= [4·38,72·0,2151/(0,08206·400)] = 1,0149;

= –[2·38,72·0,21512/(0,08206·400)] = –0,1092.

Коэффициенты приведенного кубического уравнения (6.5) соответственно равны:

= [3·1,0149 –(–2,3593)2]/3 = –0,8405;

= 2·(–2,3593)3/27 –(–2,3593·1,0149)/3 + (–0,1092) = –0,2838;

= (–0,8405/3)3 + (–0,2838/2)2 = –0,0019.

Значение D отрицательное, следовательно, уравнение имеет три действительных решения.

17. Найдем значения корней уравнения (6.12) при 400 К. Для этого выполним последовательно следующие вычисления:

= [–(–0,8405)3/27]1/2 = 0,1483;

= –(–0,2838)/(2·0,1483) = 0,9568;

= arccos (0,9568) = 0,2950 радиан;

= 2·(0,1483)1/3 cos(0,2950/3) = 1,0535;

= 2·(0,1483)1/3 cos(0,2950/3 + 2·3,14/3) = –0,6159;

= 2·(0,1483)1/3 cos(0,2950/3 + 4·3,14/3) = –0,4388;

= 1,0535 –(–2,3593/3) = 1,840 л/моль;

= –0,6159 –(–2,3593/3) = 0,171 л/моль;

= –0,4388 –(–2,3593/3) = 0,348 л/моль.

Наибольший корень = 1,840 л/моль соответствует максимуму на изотерме 400 К и ограничивает метастабильные состояния пара слева. Корень , равный 0,171 л/моль, не имеет физического толкования, поскольку его значение меньше параметра b в уравнении Ван-дер-Ваальса. И, наконец, корень соответствует минимуму на изотерме 400 К и отделяет слева область пересыщенной жидкости от абсолютно неустойчивых состояний.

18. Давление в системе при соответствующем объеме пересыщенного пара ( ) и пересыщенной жидкости ( ) находится из уравнения Ван-дер-Ваальса подстановкой в него требуемых значений температуры и объема.

= (0,08206·400)/(1,840–0,215)–38,72/1,8402 = 8,763 атм;

= (0,08206·400)/(0,348–0,215)–38,72/0,3482 = –72,928 атм.

19. Результаты расчета для прочих температур приведены в табл. 6.4.

Т, К

, атм

, л/моль

, атм

, л/моль

400

-72,928

0,348

8,763

1,840

500

-20,124

0,397

14,913

1,324

600

17,803

0,482

24,103

0,929

640

28,798

0,563

29,347

0,750

Характеристики

Тип файла
Документ
Размер
1,36 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее