166291 (740194), страница 2

Файл №740194 166291 (Понятие давления паров и теплоты) 2 страница166291 (740194) страница 22016-08-02СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Теоретическая аргументация применения этого уравнения дана А.Н.Корниловым.



Корреляции, основанные на использовании принципа соответственных состояний

Корреляция Ли-Кеслера

В группе трехпараметрических корреляций для прогнозирования P-T данных довольно широкое применение нашло разложение Питцера

(7.12)

с аналитическим представлением функций и , выполненным Ли и Кеслером:

;(7.13)

,(7.14)

где - приведенное давление насыщенного пара, равное давлению насыщенного пара, деленному на критическое давление , а - ацентрический фактор. Величину ацентрического фактора при использовании корреляции Ли-Кеслера целесообразно также вычислять по уравнению Ли-Кеслера (5.7).

Преимущества корреляции Ли-Кеслера очевидны. Однако необходимо помнить, что универсальных подходов к описанию P-T данных в настоящее время не выработано, поэтому результаты прогнозирования для одних соединений могут быть очень хорошими, для других - только удовлетворительными. То же можно сказать и для различных температурных диапазонов применительно к одному и тому же соединению. В связи с этим ниже рассмотрены еще несколько наиболее часто применяющихся корреляций.


Корреляция Риделя

Выше было приведено уравнение Риделя для давления паров (7.10). По аналогии с этим уравнением им же рекомендована корреляция с использованием приведенных параметров:

,(7.15)

где ;

;

;

;

;

;

,(7.16)

c - коэффициент Риделя в критической точке. При вычислении коэффициента Риделя с использованием приведенной выше корреляции необходимо иметь в виду, что критическое давление должно быть выражено в физических атмосферах.

Итак, зная критические параметры Tc, Pc и c, можно рассчитать давление насыщенного пара при любой из интересующих температур. Для определения величины c можно использовать либо значение нормальной температуры кипения, либо известное давление насыщенного пара при какой-либо другой температуре. С аналогичным подходом мы уже встречались при определении величины ацентрического фактора.


Корреляция Фроста-Колкуорфа-Тодоса для давления паров

Фрост и Колкуорф интегрировали уравнение Клаузиуса-Клапейрона в приближении , но они не считали величиной постоянной, а находили по уравнению Ван-дер-Ваальса. Результирующее уравнение лишь немного отличается от уравнения Риделя:

,(7.17)

однако величина D связана с константой Ван-дер-Ваальса “a” и критическими температурой и давлением:

.(7.18)

Тодос и его сотрудники детально исследовали уравнение (7.17) и предложили для константы “C” зависимость

.(7.19)

Используя уравнения для приведенных параметров, получена зависимость:

.(7.20)

Константу “B” можно определить, если известно давление насыщенного пара вещества при какой-либо температуре. Так, для нормальной точки кипения имеем

.(7.21)

Из приведенного материала видно, что значения констант “B” и “C” в уравнении являются зависимыми от природы рассматриваемого вещества. Это должно приводить к лучшему предсказанию прогнозируемого свойства, чем при использовании корреляций “жесткого” типа, где константы имеют постоянное значение. К последним можно отнести, в частности, корреляцию Ли-Кеслера. Тем не менее корреляция Фроста-Колкуорфа-Тодоса используется в практических расчетах нечасто. Причиной тому служит определенное неудобство в ее применении, вызванное отсутствием P-T зависимости в явном виде. Конечно же, в настоящее время эти проблемы легко решаются, но существует некоторая инерция в отношении к применяемым подходам. Для облегчения вычислительных процедур Гарлахер и Браун на основе большого массива надежных экспериментальных данных рассчитали значения констант “B” и “C” для 242 веществ, которые приведены в [5]. Они также предложили приближенную корреляцию этих констант с парахором и фактором ацентричности.

В заключение следует сказать, что предпринималось множество других попыток улучшения подходов к интегрированию уравнения Клаузиуса-Клапейрона с целью обеспечения более тесной связи вида применяемых корреляций и природы соединений, для которых прогнозируются свойства. Обычно увеличение точности прогноза сопряжено с необходимостью привлечения дополнительной экспериментальной информации. Причем ее качество существенно влияет на качество прогноза. Так, например, метод Тека и Стила рекомендован для прогнозирования упругостей паров веществ, в том числе и сильно полярных или имеющих группы, участвующие в образовании ассоциатов. Для использования этого метода необходимо располагать сведениями по энтальпии испарения вещества при нормальной точке кипения, кроме критических параметров и Tb . Совершенно очевидно, что такой набор информации отсутствует для множества веществ. Кроме того, выполненная нами проверка метода на большом массиве соединений показала, что этим методом можно пользоваться только при наличии весьма точных данных. В противном случае предсказание дает большую ошибку, чем при использовании таких методов, как Ли-Кеслера, или эквивалентных ему. Применение методов, широко используемых при прогнозировании давлений насыщенного пара органических веществ, иллюстрируется примером 7.1.

Характеристики

Тип файла
Документ
Размер
925,45 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6418
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее