166196 (740158), страница 2
Текст из файла (страница 2)
где Г — адсорбция, выраженная в мкмоль/м2.
Рис. 5. Зависимости поверхностного натяжения от концентрации водных растворов ряда длинно-цепочечных спиртов
Тот факт, что наклоны кривых, приведенных на рис. 5, одинаковы означает, что нормальные спирты имеют одинаковую площадь на молекулу в адсорбционном слое, независимо от длины гидрофобного радикала. Постоянство площади на молекулу в поверхностном слое для спиртов с гидрофобными радикалами средней длины согласуется с молекулярным упорядочением на поверхности: полярные группы направлены в сторону воды, а неполярные гидрофобные цепи направлены в сторону воздуха.
В случае ионных ПАВ необходимо учитывать, что с молекулами ПАВ ассоциированы противоионы и что поверхность в целом должна быть электронейтральной. Уравнения и принимают при этом вид
Однако при избытке соли нужно пользоваться уравнениями и. Причина в том, что избыток соли нивелирует влияние противоионов на поверхности, и ПАВ адсорбируется на поверхности как индивидуальный компонент, не сопровождаемый противоионом.
Связь адсорбции поверхностно-активных веществ на границе жидкость-воздух с критическим параметром упаковки
Как и спирты с гидрофобными группами средней длины, поверхностно-активные вещества также адсорбируются на поверхности жидкость-воздух так, что полярные группы направлены в сторону воды, а гидрофобные части молекул — в сторону воздуха. На рис. 6 показаны изотермы поверхностного натяжения этоксилированного алкилсульфата при различных концентрациях соли. Видно, что с увеличением содержания соли а) снижается ККМ, б) предельное поверхностное натяжение при концентрациях выше KKM уменьшается, в) наклон кривых вблизи KKM увеличивается, что указывает на увеличение адсорбции в соответствии с уравнениями. Все три факта указывают на увеличение критического параметра упаковки системы вследствие экранирования противо-ионами полярных групп поверхностно-активного вещества. Из наклона кривых ниже KKM можно определить, что при повышении концентрации соли молекулы ПАВ упаковываются в поверхностном слое плотнее в соответствии с увеличением эффекта экранирования электролитом.
На рис. 7 представлены данные по поверхностному натяжению растворов ряда неионных ПАВ типа Ci6E. Видно, что НПАВ с более короткими полиокси-этиленовыми цепями лучше упаковываются на поверхности вода - воздух, и наклон зависимостей поверхностного натяжения от Ig С вблизи KKM в этом случае больше. Все это согласуется с концепцией КПУ; в частности, последний увеличивается с уменьшением длины полиоксиэтиленовой цепи в молекулах ПАВ. Отметим также, что поверхностное натяжение при KKM и выше KKM понижается, по мере того как полиоксиэтиленовые цепи становятся короче. При этом заметного влияния на величину KKM не отмечается.
На рис. 8 представлены изотермы поверхностного натяжения растворов соединений СЕб при разных температурах. Известно, что при повышении температуры полиоксиэтиленовые цепи сжимаются, что приводит к увеличению КПУ. Из этого рисунка видно, что в результате происходит понижение поверхностного натяжения и ККМ. Детальный анализ также показывает, что адсорбция НПАВ при концентрациях ниже KKM увеличивается с повышением температуры, а следовательно, площадь на молекулу в поверхностном слое уменьшается с повышением температуры.
Рис. 6. Поверхностное натяжение растворов CieEsSO4Na при различных концентрациях соли
Рис. 7. Изотермы поверхностного натяжения растворов ряда неионных ПАВ с различными значениями п
Наконец, необходимо обратить внимание на влияние примесей на поверхностное натяжение растворов ПАВ. На рис. 9 представлены данные по зависимости поверхностного натяжения растворов додецилсульфата натрия от концентрации. Минимум поверхностного натяжения на этой зависимости обусловлен присутствием додецилового спирта, который образуется в результате гидролиза ДСН. Додециловый спирт более поверхностно-активен, чем ДСН, поэтому он преимущественно адсорбируется на поверхности раствор-воздух, понижая поверхностное натяжение. По мере образования мицелл в растворе молекулы додецилового спирта солюбилизируются мицеллами и десорбируются с поверхности, в результате чего поверхностное натяжение повышается. Таким образом, если на зависимостях поверхностного натяжения от концентрации ПАВ обнаруживается минимум, это свидетельствует о том, что образец ПАВ содержит примеси, обладающие более высокой поверхностной активностью, нежели основное ПАВ.
Рис. 8. Изотермы поверхностного натяжения растворов С^Еб, измеренные при различных температурах
Рис. 9. Поверхностно-активные примеси в образце ПАВ являются причиной минимума на зависимостях поверхностного натяжения от концентрации ПАВ.
Два важных наблюдения были сделаны для таких систем. Во-первых, поверхностное натяжение медленно снижается до достижения равновесного значения в течение очень длительного времени. Это объясняется тем, что примеси могут присутствовать в очень малых концентрациях, и снижение поверхностного натяжения лимитируется диффузией компонента из объема раствора к поверхности. Во-вторых, в таких системах величина равновесного поверхностного натяжения зависит от соотношения поверхность: объем для конкретного образца. Чем больше объем раствора, тем больше примеси может адсорбироваться на поверхности и тем сильнее снижается поверхностное натяжение.
Трудности при интерпретации адсорбции полимеров
Измерение поверхностного натяжения растворов полимеров нередко приводит к путанице. На рис. 10 представлены зависимости поверхностного натяжения от объемной доли для полидиметилсилоксана в тетралине. По мере увеличения молекулярной массы полимера снижение поверхностного натяжения при низкой концентрации становится более сильным. Причина в плохой совместимости полимера и растворителя. Растворимость полимера уменьшается при увеличении его молекулярной массы. Молекулы полимера с большей молекулярной массой выталкиваются из объема раствора на поверхность, где число контактов сегментов полимера с растворителем понижено по сравнению с раствором. Из-за низкой растворимости молекул с большой молекулярной массой высокомолекулярное вещество сильно концентрируется на поверхности, и поверхностное натяжение снижается. Известно, что это явление часто приводило к неправильным выводам о мицеллообразовании полимера, поскольку в этом случае зависимости поверхностного натяжения от концентрации похожи на соответствующие кривые для мицеллярных растворов.
Рис. 10. Зависимости поверхностного натяжения растворов в тетралине полидиметилсилоксанов различных молекулярных масс от объемной доли полимера в растворе.
Видно, что наиболее сильно поверхностное натяжение снижается при низких концентрациях для полимера с наибольшей молекулярной массой, причем ход зависимости аналогичен кривым изменения поверхностного натяжения растворов поверхностно-активных веществ
Равновесное поверхностное натяжение
К простым способам измерения поверхностного натяжения относится метод кольца дю Нуи. Платиновое кольцо притапливают в жидкости, и измеряется сила, необходимая для вытягивания кольца через поверхность. Вместо кольца можно использовать платиновую пластинку. Измеряют силу втягивания пластинки в жидкость, эта сила зависит от краевого угла смачивания пластины жидкостью. Очень простым методом измерения поверхностного натяжения является измерение подъема смачивающих жидкостей в капиллярах. Высота подъема h прямо пропорциональна поверхностному натяжению согласно уравнению г = rhpg/2, где г—радиус капилляра, с — плотность жидкости, g — ускорение свободного падения. Это уравнение справедливо только для жидкостей, идеально смачивающих стенки капилляра, т. е. когда краевой угол смачивания равен нулю.
В некоторых системах равновесное состояние устанавливается очень долго, и измерения поверхностного натяжения в этих случаях занимают длительное время. К таким системам относятся растворы высокомолекулярных ПАВ. Для подобных систем приемлемым методом измерения является метод висящей капли. Мерой поверхностного натяжения в этом случае служит форма капли; капли, близкие к сферическим, образуются из жидкостей с большим поверхностным натяжением, удлиненные капли образуются из жидкостей с низким поверхностным натяжением. Этот метод пригоден также для измерения межфазного натяжения между двумя взаимно нерастворимыми жидкостями.
Рис. 11. Поверхностное натяжение можно измерить: методом дю Нуи, методом пластинки Вильгельми, методом подъема жидкости в капилляре, методом висящей капли
Динамическое поверхностное натяжение
Динамическое поверхностное натяжение можно измерять различными способами, например методом наибольшего давления в пузырьке. Воздух непрерывно пропускается через два капилляра различных диаметров, погруженных в раствор. Давление, которое требуется для образования пузырька, обратно пропорционально диаметру капилляра и прямо пропорционально поверхностному натяжению жидкости. Использование двух капилляров позволяет не измерять глубину погружения капилляра в жидкость. Данным методом измеряют динамическое поверхностное натяжение в интервалах времени 1-10 мс. При необходимости измерять динамическое поверхностное натяжение в еще более коротких интервалах используют метод осцилляции струи. Жидкая струя испускается из отверстия эллиптической формы.
Из-за некругового поперечного сечения струя механически неустойчива, жидкость в струе стремится принять круговое поперечное сечение, что приводит к осцилляции сечения между предельными значениями. Частота таких осцилляции связана с динамическим поверхностным натяжением.
Поверхностное и межфазное натяжения как результат межмолекулярных взаимодействий
Обсудим зависимость поверхностного и межфазного натяжения от особенностей взаимодействия между молекулами. Для простоты изложения энтропийные вклады в поверхностное натяжение можно не учитывать. Запишем энергию, приходящуюся на молекулу в объеме жидкости А, как
где Waa — отрицательная величина, характеризующая энергию притяжения между молекулами. Обозначим долю ближайших соседей в плоскости, параллельной поверхности, как /, а долю ближайших соседей в плоскости, расположенной над ней или под ней — как т. Тогда можно записать
Энергия на одну молекулу на поверхности вода-воздух описывается соотношением
так как в плоскости над поверхностью вода-воздух у молекулы нет соседей. Энергия, необходимая для переноса одной молекулы из объема на поверхность, выражаться тогда как
Поскольку энергия Waa — отрицательная величина, очевидно, что для переноса молекулы из объема на поверхность требуются источники положительной энергии. По этой причине капля жидкости принимает сферическую форму, достигая таким образом минимальной площади поверхности и, следовательно, минимальной полной энергии системы.















