166109 (740108), страница 3

Файл №740108 166109 (Щелочноземельные металлы) 3 страница166109 (740108) страница 32016-08-02СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

(NH4)2[Э(СО3)2] = 2NH3 + CО2 + ЭСО3 + Н2О .

BeCO3 растворим также в углекислых щелочах. К таким двойным карбонатам относится природный доломит - Са[Mg(СО3)2]. Применение нашел перхлорат магния (“ангидрон”) как отбеливатель и осушитель.

Ацетат бериллия получается только при нагревании ВеСl2 c безводной уксусной кислотой. Эта соль не растворима в воде и медленно ею разлагается с образованием основных солей. При 300 оС начинает разлагается. Mg(CH3COO)2 растворим в воде. Оксалат бериллия – ВеС2О4.2О, представляет собой порошок белого цвета; растворим в воде. При 100 оС теряет 2 молекулы Н2О. При 220 оС теряет последнюю молекулу воды и плавится, а при 350 оС разлагается: ВеС2О4 = СO2 + СО + BeО. Были получены комплексы типа Na2[Ве(С2О4)2]. MgС2О4.2О малорастворим в воде. Взаимодействует с раствором оксалата аммония с образованием растворимой двойной соли:

(NH4)2С2О4 + MgС2О4 = (NH4)2[Mg(С2О4)2].

Одно-, двух-, трех- замещенные ортофосфаты бериллия и магния Be(H2PO4)2.2H2O, BeHPO4.3H2O, Be3(PO4)3.4H2O, Mg3(PO4)2.nH2O (n=8,6,4), MgHPO4.nH2O (n=1,2,7) мало растворимы в воде. Их можно получить растворением гидроокисей в соответствующих количествах Н3РО4, или обменными реакциями с х-замещенными ортофосфатами натрия. Следующей реакцией пользуются для открытия катионов Mg2+ и анионов фосфорной, мышьяковистой кислоты: MgCl2 + NH4OH + Na2HPO4 = H2O +2NaCl + MgNH4PO4.

Сульфиды Э получают прямым синтезом из элементов. ВеS представляет собой серовато-белые кристаллы. Он подвержен гидролизу в воде: ВеS + 2H2O = Be(OH)2 + H2S. MgS – бесцветные кубические кристаллы. Он плавится выше 2000 оС, в воде подвержен гидролизу: 3MgS + 2H2O = Mg(HS)2 + 2MgO + H2S.

Метанид бериллия получают прокаливанием ВеО с углем: 2ВеО + 3С = Ве2С + 2СО. Этот красновато-желтый порошок разлагает воду с выделением метана:

Ве2С + 4Н2О = СН4 + 2Ве(ОН)2.

Ацетилид бериллия получают прокаливанием тесной смеси Ве с углем. разлагает воду с выделением ацетилена: ВеС2 + 2Н2О = С2Н2 + Ве(ОН)2. Карбидные соединения Mg эндотермичны. MgC2 получают действуя на порошок магния ацетиленом или бензолом при нагревании: Mg + C2H2 = MgC2 + H2. Mg2C3 получают действуя пентаном на порошок магния. Водой MgC2 разлагается с выделением С2Н2, а Mg2C3 c выделением СН3-ССН. Все карбиды Э реагируют с галогенами и серой и азотом при нагревании образуя соответственно ЭS, ЭCl2 и Э3N2. Нитриды Э образуются при нагревании порошков Э c азотом или аммиаком: 2NH3 + 3Э = Э3N2 + 3H2. Be3N2 – белый порошок устойчивый на воздухе. Может быть получен по схеме: 3Ве + 2KCN = Be3N2 + 2K + 2C. Mg3N2 – аморфный порошок зеленовато-желтого цвета, флюоресцирует оранжевым цветом. Реагирует с метанолом и окислами углерода:

Mg3N2 + 6CH3OH = NH3 + N(CH3)3 + 3Mg(OH)OCH3;

Mg3N2 + 3COx = 3MgO + N2 + 3COx-1

Оба нитрида гидролизуется водой и растворяются в кислотах:

Э3N2 + Н2О = NH3 + Mg(OH)2; Э3N2 + 8H+ = 2Э2+ + 2NH4+.

Mg3N2 является восстановителем.

Фосфиды Э образуются при действии паров фосфора на порошки соответствующих металлов. Они разлагаются водой до гидроокиси и фосфина. Также они горят выделяя ЭО, Р2О5 и много тепла.

Силициды известны лишь для магния (Mg2Si и Mg3Si2). Орто-силикат бериллия встречается в природе в виде минерала фенакита. Можно получить при нагревании BeO и SiO2 по схеме: 2BeO + SiO2 = Be2SiO4. Он нерастворим. Бериллий образует интерметаллические соединения: MoBe12, WBe12, TaBe12, UBe13, PuBe13 и др.

Бериллиды обладают высокой прочностью и температурой плавления. Так, NbBe2 имеет Тпл 1880 оС, Ta2Be17 – 1980 оС, а ZrBe13 – 1920 оС.

Кристаллические структуры интерметаллических соединений, по сравнению со многими системами на основании других металлов, значительно различаются между собой. В первом приближении все магниды можно разделить на две большие группы:

  • магниды, имеющие структуры, типичные для металлов и сплавов;

  • магниды, имеющие структуры, типичные для ионных или гетерополярных соединений.

Граница между этими группами условна, но, в общем, увеличение атомного номера в периоде сопровождается последовательным переходом от соединений металлического типа к валентным и ионным соединениям.

Существуют несколько способов получения магнидов; важнейшими из них являются следующие:

1. Синтез из компонентов по реакции общего вида: xMe + yMg MexMgy, реакция осуществляется сплавлением, спеканием (или горячим прессованием), дистилляцией. Этим методом можно получать все обнаруженные к настоящему времени магниды двойных или многокомпонентных систем;

2. Магнийтермическое восстановление: MeхOy + (y+z)Mg MeхMgz + yMgO. Применяется в случаях, когда прямое сплавление не дает должного результата;

3. Электрохимический способ (электролитическое выделение);

4. Пиролиз, например, по схеме: MgB2 800–960 C MgB4 970 C MgB6 >1200 CMgB12.

Применение бериллия.

Малая плотность, высокая Тпл, необычайно высокий модуль упругости (300 ГПа), уникальная теплоемкость (1826 Дж\(кг.К)) и высокие значения электрической проводимости и теплопроводности обусловили применение Ве в различных областях техники. Бериллий потребляется атомной промышленностью как отражатель и замедлитель нейтронов и как конструкционный материал. Он широко применяется в точных приборах: системах наведения и управления, в авиа- и ракетостроении. Также Ве применяют для легирования различных сплавов. Бериллиевые бронзы (сплавы Ве с Cu) нашли применение для изготовления контактов, зажимов и др. аппаратуры. Они обладают хорошей электропроводностью и механическими свойствами. Окись бериллия нашла применение как отражатель и замедлитель нейтронов, а также для изготовления оболочек ТВЭЛов и тиглей.

Применение магнидов в технике.

Практический интерес представляют сплавы Mg–Zr, поскольку сравнительно небольшая добавка циркония существенно уменьшает размер зерна магния и таким образом улучшает механические свойства материала. Такие сплавы применяются, например, в качестве материала для оболочек тепловыделяющих элементов реактора с графитовым замедлителем и теплоносителем CO2.

Неконструкционное применение магния.

Магний обладает большим сродством к кислороду. На этом свойстве магния основана магнийтермия, открытая Бекетовым как способ получения других металлов вытеснением их магнием из соединений. Она приобрела большое значение для современной металлургии. В качестве примера можно указать, что магнийтермия стала основным способом в производстве таких металлов, как бериллий и титан. Относительно легкая воспламеняемость дисперсного магния и способность его гореть ослепительным белым пламенем долгое время использовалась в фотографии. Магниевый порошок стали применять также в качестве высококалорийного горючего в современной ракетной технике. Введение небольшого количества металлического магния в чугун позволило значительно улучшить его механические (в частности, пластические) свойства.

Глубокая очистка магния от примесей, достигнутая в последнее время, позволила использовать его в качестве одного из компонентов при синтезе полупроводниковых соединений.

Конструкционное применение магния.

Основное преимущество металлического магния – его легкость (магний – самый легкий из конструкционных металлов). Технически чистый магний обладает невысокой механической прочностью, однако введение в него в небольшом количестве других элементов (алюминия, цинка, марганца) может значительно улучшить его механические свойства почти без увеличения удельного веса. На основе этих свойств магния был создан сплав “электрон”, содержащий, помимо магния, 6% алюминия, 1% цинка и 0,5% марганца. (В настоящее время под техническим названием “электрон” понимаются вообще все сплавы, в которых магний является главной составной частью). Плотность этого сплава – 1,8 г/см3; прочность на разрыв – до 32 кГ/мм2; твердость по Бринеллю – 40–55 кГ/мм2. Этот, а также многие другие сплавы на основе магния широко применяются в авиа- и автостроении. Основной недостаток магния – низкая коррозионная стойкость. Магний сравнительно устойчив в сухом атмосферном воздухе, в дистиллированной воде, но быстро разрушается в воздухе, насыщенном водными парами и загрязненном примесями, в особенности сернистым газом. Ниже приведена таблица коррозионной устойчивости магния и его сплавов. ”-” – неустойчив, ”+” – устойчив.

Дистиллированная вода при 100 оС

+

Пресная вода, морская вода, пар

-

Чистая HF

+

Чистая H2CrO4

+

Прочие растворы неорг. кислот

-

Фториды щелочных металлов

+

Растворы хлоридов

-

Хроматы калия и натрия

+

Раствор Na(OH)40% при Т=120 оС

+

Сода

+

Сера (жидкая и газ)

+

Растворы сульфатов (кроме аммония)

-

СS2

+

Ртуть

-

Фтор

+

Хлор

-

Орг. кислоты

-

Метиловый спирт

-

Этиловый и бутиловый спирты

+

Теплый раствор мочевины

-

Холодный раствор мочевины

+

Глицерин

-

Гликоль и гликолевые смеси

-

Уксусный и этиловые эфиры

+

Формальдегид и ацетальдегид

-

Трихлоральдегид

-

Ацетон

+

Нефть, мазут, бензин, метан, этан

+

Бензол, толуол, ксилол, фенол, крезол

+

Камфора, копаловые смолы

+

Каучук, резина

+

Жиры и масла, не содержащие кислот

+

Целлюлоза, сахар (бескислотный р-р)

+

Часть третья. Щелочноземельные металлы.

Кальций, стронций, барий и радий носят название щелочноземельных металлов. Названы они так, потому что их окиси придают воде щелочную среду.

История щелочноземельных металлов.

Известняк, мрамор и гипс уже в глубокой древности (5000 лет назад) применялись египтянами в строительном деле. Вплоть до конца 18 века химики считали известь простым веществом. В 1746 г. И. Потт получил и описал довольно чистую окись кальция. В 1789 году Лавуазье предположил, что известь, магнезия, барит - вещества сложные. Еще задолго до открытия стронция и бария их “нерасшифрованные” соединения применяли в пиротехнике для получения соответственно красных и зеленых огней. До середины 40-х годов прошлого века стронций был прежде всего металлом “потешных огней”. В 1787 г. в свинцовом руднике близ шотландской деревни Стронциан был найден новый минерал, который назвали стронцианитом SrCO3. А. Крофорд предположил существование еще неизвестной «земли». В 1792 г. Т. Хоп доказал что в состав найденного минерала входит новый элемент – стронций. В то время что с помощью Sr(OH)2 выделяли нерастворимый дисахарат стронция (С12Н22О4.2SrO ), при получения сахара из мелассы. Добыча Sr возрастала. Однако скоро было замечено, что аналогичный сахарат кальция тоже не растворим, а окись кальция была несомненно дешевле. Интерес к стронцию сразу же пропал и вновь возрос к нему лишь в 40-х годах прошлого века. Тяжелый шпат был первым известным соединением бария. Его открыл в начале XVII в. итальянский алхимик Касциароло. Он же установил, что этот минерал после сильного нагре­вания с углем светится в темноте красным светом и дал ему название «lapis solaris» (солнечный камень). В 1808 году Дэви, подвергая электролизу с ртутным катодом смесь влажной гашеной извести с окисью ртути, приготовил амальгаму кальция, а отогнав из неё ртуть, получил металл, названный «кальций» (от лат. Calх, род. падеж calcis – известь). Тем же способом Дэви были получены Ва и Sr. Промышленный способ получения кальция разработан Зутером и Редлихом в 1896 г. на заводе Ратенау (Германия). В 1904 г. начал работать первый завод по получению кальция.

Характеристики

Тип файла
Документ
Размер
500,41 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6367
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее