165992 (740049), страница 2
Текст из файла (страница 2)
Здесь Rnt - радиальная составляющая волновой функции, зависящая от единственной переменной г - расстояния электрон - ядро и характеризуемая только двумя квантовыми числами п и I, а Ylm - угловая составляющая волновой функции, описывающая зависимость распределения электронной плотности от углов 9 и ф, т.е. форму и ориентацию АО, и характеризуемая квантовыми числами I и т. Рассмотрим последовательно физический смысл квантовых чисел п, I, ти характер различных АО.
Квантовое число п называется главным квантовым числом. Величина п определяет номер электронного слоя: чем меньше п, тем прочнее электрон связан с ядром и тем ближе, в среднем, он находится к ядру. Главное квантовое число может принимать целочисленные положительные значения 1, 2, 3 и т.д. Набор АО с одинаковым п составляет слой. Основному состоянию атома водорода соответствует п = 1, при этом Е1 = - 1312 кДж. Такое количество энергии выделится при образовании одного моля атомов водорода из протонов и электронов, находящихся на бесконечном удалении друг от друга. В одноэлектронном атоме или в одноэлектронном ионе с зарядом ядра Z главное квантовое число однозначно определяет энергию электрона Еп:
Еп = - Rtf/a2
Здесь R - постоянный множитель, равный 1312 кДж, если энергия отнесена к 1 молю атомов и заряд Z измеряется в единицах заряда электрона.
Второе квантовое число I называется орбитальным, оно определяет возможные квантованные величины орбитального момента количества движения электрона. Число I может принимать целочисленные значения от 0 до п - 1.
По традиции, сложившейся в процессе изучения атомных спектров, значения I обычно обозначают буквами: s, р, d, f и далее по английскому алфавиту вместо 0, 1, 2, 3 и т.д. Для нас самое главное то, что при описании электрона в виде облака число I определяет его форму. Так, s-электроны имеют шарообразные, сферически симметричные облака, лишь в этом случае волновая функция \|/ не зависит от углов Э и ф; р-электроны {I = 1) имеют гантелеобразные облака, d-электроны образуют облака еще более сложной формы.
Вернемся к уравнению, в котором при RM стоят индексы nl. Как уже отмечалось, это значит, что первое и второе квантовые числа вместе полностью определяют характер радиальной части волновой функции. Рассмотрим, как меняется плотность электронного облака с расстоянием от ядра. На рис.2.10 по оси ординат отложена вероятность нахождения электрона в пространстве, заключенном между сферами с радиусами г и г + dr. Из рисунка видно, что все эти кривые, которые называются кривыми радиального распределения электронной плотности, проходят через один или несколько максимумов. Если максимумов несколько, то они разделены узловыми точками, в которых плотность равна нулю. Последний от ядра максимум - самый большой, главный. Число максимумов равно п - I, число узловых точек равно - 1. Таким образом, с учетом углового и радиального распределения облако, соответствующее ls-электрону, можно представить себе как диффузный шар переменной плотности, имеющей один максимум и постепенно сходящей на нет при удалении от центра. Облако 2"-электрона подобно сфере с двумя сгущениями плотности и т.д.
Видно, что среднее расстояние электрона от ядра существенно различно для разных атомных орбиталей: оно растет с увеличением п, а при равных п - с уменьшением I. Чем меньше I при одинаковых п, тем дальше от ядра и тем ниже главный максимум и тем большая часть электронной плотности находится ближе к ядру за счет внутренних максимумов.
Третье квантовое число т - магнитное - определяет направление орбитального момента электрона, а с точки зрения модели электронного облака - ориентацию его в пространстве. Магнитное квантовое число может принимать целочисленные значения от - I до +1, что соответствует разрешенным квантовой механикой значениям проекции орбитального момента на заданное направление в пространстве. Следует отметить, что определенное направление может быть задано внешним полем - электрическим или магнитным. В отсутствие внешнего поля все разрешенные ориентации электронного облака равновероятны.
Поскольку облако s-электронов сферически симметрично, вопрос о его ориентации просто не имеет смысла. В случае р-электронов возможны три значения магнитного квантового числа - 1,0 и +1 и, соответственно, разрешены три взаимно перпендикулярные ориентации гантелеобразного облака. У d-электронов возможны пять значений т, у /электронов - семь.
Итак, три квантовых числа - главное, орбитальное и магнитное - позволяют задать атомную орбиталъ и достаточно подробно охарактеризовать одноэлектронный атом: мы точно знаем энергию электрона и можем качественно описать электронное облако - его форму, ориентацию в присутствии внешнего поля, число сгущений электронной плотности и число внутренних узловых поверхностей, где плотность сходит к нулю.
Однако тремя квантовыми числами не исчерпываются данные, необходимые для полного описания состояния электрона в атоме. Детальное исследование атомных спектров показало, что электрон обладает собственным моментом количества движения, который получил название спинового момента или спина. При вероятностном описании электрона как стоячей волны или как электронного облака спин не имеет классических аналогий - это просто свойство микрочастиц.
Спин электрона характеризуется спиновым квантовым числом ms, которое может иметь два значения +1/2 и - 1/2, т.е. спин может иметь два противоположных направления.
Таким образом, для полной характеристики состояния электрона в атоме необходимы четыре квантовых числа. Первые три из них определяют распределение его плотности в пространстве, а четвертое - его спин. Знание смысла и возможных значений квантовых чисел имеет исключительное значение для химика, поэтому ниже мы приводим краткую сводку важнейших сведений такого рода.
Решение уравнения Шредингера для атома водорода позволяет, в принципе, рассчитать его основные характеристики с любой точностью, даже точнее, чем их дает эксперимент. Наиболее важными экспериментальными характеристиками любых атомов являются энергии отрыва и присоедниения электронов. Энергию отрыва электрона от атома, молекулы или иона не совсем правильно принято называть потенциалом ионизации. Потенциал ионизации обозначают обычно буквой / и измеряют в электрон-вольтах. Экспериментально измеренный потенциал ионизации водорода равен 13,6 эВ* или как раз 1312 кДж.
Другой важной энергетической характеристикой атома является сродство к электрону - энергия, которая выделяется при присоединении к нему дополнительного электрона. Сродство обычно обозначают буквой А с указанием частицы, например для водорода Ан = 73 кДж/моль. Знак "плюс" здесь говорит о том, что атом водорода приобретает второй электрон с выделением энергии, образуя ион Н.
7. Многоэлектронные атомы
При переходе от одноэлектронного атома к многоэлектронному в дополнение к взаимодействию электрон - ядро появляется новый тип взаимодействий - электронов друг с другом. Взаимодействие любого электрона с остальными зависит от состояния каждого электрона и не может быть точно учтено, если неизвестны волновые функции всех остальных электронов, которые, в свою очередь, не могут быть рассчитаны, если неизвестно взаимодействие данного электрона с остальными. Получается замкнутый круг, который принципиально не дает возможности точно решить уравнение Шредингера для многоэлектронного атома. Эта трудность, к счастью, может быть преодолена посредством приближенного решения, суть которого заключается в следующем. Каждый электрон рассматривается отдельно таким образом, как будто он находится в одноэлектронном атоме, заряд ядра которого частично экранирован усредненным сферически-симметричным полем остальных электронов. Отдельный электрон при этом испытывает только кулоновское притяжение центра, состоящего из ядра и остальных электронов, т.е. действие некоторого центрально-симметричного положительного эффективного заряда, меньшего, чем заряд ядра. При таком подходе для многоэлектронных атомов сохраняют смысл понятия атомной орбитали и четырех квантовых чисел, только истинный заряд ядра заменяется эффективным.
Рассмотрим для примера с этой точки зрения атом гелия в основном состоянии. Если бы в нем совсем не было межэлектронного взаимодействия, то оба электрона находились бы на орбитали с п = 1 в поле заряда Z = +2 и по формуле имели бы энергию Е = = - 13,6 • 4 = - 54,4 эВ, равную экспериментально определенному потенциалу ионизации одноэлектронного иона Не+. Другой крайний вариант - идеальное экранирование заряда ядра одним электроном по отношению к другому, который тогда испытывал бы действие заряда ядра, уменьшенного ровно на единицу, т.е. ядра с Z = +1. Тогда мы получаем точно такую же ситуацию, как в атоме водорода, и потенциал ионизации должен быть равен 13,6 эВ.
Для реального атома гелия истина лежит где-то между этими крайностями, действительно, его потенциал ионизации составляет 24,6 эВ. По формуле можно подсчитать заряд Z*, который должен испытывать на себе электрон с этой энергией в одноэлектронном атоме: Z* = ^24,6/13,6 = 1,34. Это и есть тот самый эффективный заряд, который действует на каждый электрон в атоме гелия.
В общем случае эффективный заряд ядра Z* - это положительный заряд, который "чувствует" электрон в многоэлектронном атоме на заданной АО. Пользуясь эффективными зарядами ядер, мы можем оценивать энергию атомных орбиталей в многоэлектронном атоме.
8. Электронная конфигурация атома
Распределение электронов по АО называют электронной конфигурацией атома. Порядок заполнения АО электронами определяется двумя важнейшими принципами.
Согласно принципу минимума энергии наиболее устойчивому состоянию атома отвечает размещение электронов на орбиталях с наименьшей энергией, т.е. обеспечивается минимум потенциальной энергии системы, состоящей из электронов с ядром.
Согласно принципу Паули любые два электрона в атоме во избежание бесконечно большого взаимного отталкивания должны отличаться друг от друга хотя бы одним квантовым числом. Так, если два электрона находятся на одной АО, то они должны иметь противоположные спины.
В соответствии с указанными принципами атом гелия в основном состоянии имеет электронную конфигурацию Is2, при которой оба электрона находятся на ls-орбитали и имеют противоположные спины. Суммарный спин атома равен нулю. Схематически эту ситуацию можно изобразить в виде ячейки с двумя стрелками:
Атом лития, следующий за гелием в периодической системе, содержит три электрона. По принципу минимума энергии два из них расположатся, как и в атоме гелия, на ls-орбитали. Третий электрон в соответствии с принципом Паули должен располагаться на АО с п = 2. Однако таких возможностей две - 2s - и 2р-орбитали, и электрон будет иметь меньшую энергию на той из них, где он будет испытывать действие более высокого эффективного заряда. Рассмотрим с этой точки зрения кривые распределения электронной плотности в атоме лития в зависимости от расстояния от ядра. Из этих кривых хорошо видно, что замкнутый слой Is расположен гораздо ближе к ядру, чем основная плотность 2s - или 2р-электрона. Однако внутренний максимум 2в-электрона практически полностью проникает в ls-электронную плотность в близкой к ядру области, и определенная часть его плотности "чувствует" на себе почти полный заряд ядра Z=+3. Единственный максимум 2р-электрона далек от ядра, а в области сосредоточения ls-электронов находится лишь незначительная его часть. Следовательно, в атоме лития электрон на 2в-орбитали испытывает на себе действие несколько более высокого эффективного заряда, он несколько хуже экранирован от ядра ls-электронами, чем электрон на 2р-орбитали, и прочнее связан с ядром. Соответственно, в основном состоянии атом лития будет иметь электронную конфигурацию ls22s1, а конфигурация ls22p1 отвечает возбужденному состоянию.
Рассматривая одноэлектронный атом, мы пришли к заключению, что при одинаковых п за счет внутренних максимумов ближе к ядру находится большая часть плотности того электрона, который расположен на орбитали с меньшим значением I. Это в основном и определяет тот важнейший для всей химии факт, что в одном слое s-электроны испытывают на себе самый большой эффективный заряд, р-электроны - меньший, d-электроны - еще меньше и т.д.