Pt (739475), страница 3

Файл №739475 Pt (Платина) 3 страницаPt (739475) страница 32016-08-02СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Пирометаллургические процессы.

При переработке сульфидных руд пирометаллургическими способами благо­родные металлы частично теряются с отвальными шлаками, пылями и газами. Для теоретической оценки возможности таких потерь и создания условий для их уменьшения большой интерес представляет зависимость свободных энергий об­разования оксидов и сульфидов благородных металлов от температур.

Таблица 5.

Свободные энергии окисления сульфидов.

Реакция

Уравнение свободной энергии

GТ, Дж/моль

GТ, Дж/моль О2 при температуре, К

1173 1273 1573

PtS(тв)+2O2(г)=PtO2(тв)+SO2(г)

-228000+87.5·Т

- -227 -214

PtS(тв)+2O2(г)=PtO2(г)+SO2(г)

-17600-7.5·Т

-26 -27 -29

Агломерация. В процессе агломерации концентрат подвергается окускованию и частичной десульфурации при 1000-1100 °С, что сопровождается процессами разложения высших сульфидов и окисления получившихся продуктов кислоро­дом воздуха.

Электроплавка сульфидного никель-медного концентрата осуществляется в электропечи, куда поступает концентрат, содержащий в зависимости от месторо­ждения от 20 до 150 г/т платиновых металлов. В шихту вместе с окатышами и аг­ломератом добавляют оборотные продукты и, в зависимости от состава исход­ного сырья, известняк или песчаник. Температура расплава на границе с электродом достигает 1300-1400 °С. Пустая порода ошлаковывается; шлак сли­вают, гранулируют. На некоторых предприятиях его подвергают измельчению и флотации с целью более полного извлечения благородных металлов. Содержание благородных металлов в шлаке в зависимости от режима плавки и состава кон­центрата колеблется от 0.3 до 1.0 г/т. Штейн концентрирует основную массу пла­тиновых металлов. Содержание их в штейне колеблется в пределах 100-600 г/т.

Процесс плавки протекает в основном в восстановительном режиме, поэтому потери платиновых металлов в этом процессе определяются механическими потерями мелких корольков штейна, взвешенных в шлаковой фазе. Эти потери могут быть устранены флотацией шлаков с извлечением платиновых металлов в сульфидный концентрат. При этом извлечение платины может достигать более 99.0 %.

Конвертирование. Полученный при электроплавке штейн подвергается конвертированию. Конвертирование, цель которого состоит в возможно более полном удалении сульфида железа из никель-медных штейнов, осуществляется при температуре около 1200 °С. Процесс протекает в сульфидных расплавах, где активность платиновых металлов очень невелика. Поэтому в процессе конверти­рования в шлаковую фазу в очень незначительных количествах переходит платина (<0.5%), палладий (<0.5%), родий (<1.0%), иридий (<1.0%). Более того, конвертные шлаки перерабатываются в обеднительных печах, поэтому общие по­тери благородных металлов при конвертировании сравнительно малы.

При обжиге никелевого концентрата в печах кипящего слоя процесс окисле­ния протекает весьма интенсивно и поэтому сопровождается значительными потерями металлов.

Восстановительная электроплавка закиси никеля на металлический никель не вызывает значительных потерь платиновых металлов. Механические потери их с пылями могут быть уменьшены в результате совершенствования системы пыле­улавливания. Переход в шлаки не вызывает дополнительных потерь, так как шлаки в этом процессе являются оборотными продуктами.

Взвешенная плавка сульфидных материалов осуществляется в окислительной атмосфере при температуре около 1300 °С.

Пирометаллургическая переработка медных концентратов, содержащих платиновые металлы, включая обжиг при 800-900 °С, отражательную плавку, конвертирование и огневое рафинирование меди. В последние годы для перера­ботки медных концентратов широкое применение получили автогенные про­цессы: взвешенная плавка и плавка в жидкой ванне.

Химические реакции и температурный режим обжига медных концентратов примерно те же, что при агломерации.

Гидрометаллургические процессы.

Платиновые металлы, содержащиеся в сульфидных медно-никелевых рудах, проходят через пирометаллургические операции, концентрируются в черновом металле и поступают на электролитическое рафинирование никелевых и медных анодов. Причем в зависимости от условий проведения этих операций большее или меньшее количество платиновых металлов может переходить в сборные или оборотные продукты, что в конце концов приводит к безвозвратным потерям.

Таблица 6.

Формы нахождения платины в сульфатных, сульфатно-хлоридных и хлорид­ных растворах.

Растворы

Сульфатный

сульфатно-хлоридный

хлоридный

[Pt2(SO4)4·(H20)2]2-

[PtCl4]2- при а<1.4 В;

[PtCl6]2- при а>1.4 В.

[PtCl4]2- при а<1.4 В;

[PtCl6]2- при а>1.4 В.

При содержании в сплавах 0.01-1.0 % платинового металла, он замещает в кристаллической решетке сплава атомы никеля или меди, не образуя самостоя­тельных структур.

Известно, что в присутствии сульфидной, оксидной и металлической фаз пла­тиновые металлы концентрируются в металлической фазе. Поэтому в никелевых и медных промышленных анодах, содержащих в качестве примесей сульфидные и оксидные фазы, платиновые металлы равномерно распределены в металличе­ской фазе, образуя кристаллическую решетку замещения. Это приводит к образо­ванию в решетке сплава микроучастков (зон) с более положительным равновес­ным потенциалом. Металлы в этих зонах не растворяются при потенциале работающего анода и выпадают в нерастворимый осадок - шлам. В случае повы­шения потенциала анода до величины, соответствующей потенциалу ионизации платиновых металлов, начинается переход этих металлов в раствор. Степень перехода будет увеличиваться, если в растворе платиновые металлы образуют стойкие комплексные соединения.

Таким образом поведение платиновых металлов при электрохимическом рас­творении анодов будет определяться потенциалом анода, составом раствора и природой растворяемого сплава.

Переработка платинусодержащих шламов.

При электролитическом рафинировании меди и никеля платиновые металлы концентрируются в анодных шламах, где их содержание в зависимости от состава исходных руд колеблется в широких пределах, от десятых долей до нескольких процентов.

В соответствии с основными теоретическими положениями в шламы при растворении анодов практически без изменения переходят оксиды и сульфиды цветных металлов. Поэтому основными фазовыми составляющими никелевого шлама являются сульфиды меди и никеля (-Cu2S, -Cu2S, Ni3S2, NiS), оксиды (NiO, CuO, Fe2O3, Fe3O4), ферриты (NiFe2O4, CuFeO2). Платиновые металлы в шламах представлены рентгеноаморфными металлическими формами.

Непосредственная переработка бедных по содержанию благородных метал­лов продуктов, в состав которых входят значительные количества цветных металлов, железа и серы, на аффинажных предприятиях не производится. Поэтому анодные шламы предварительно обогащают различными пиро- и гидро­металлургическими методами с получением концентратов платиновых металлов. Технологические схемы обогащения шламов, применяемые на различных заводах, различаются между собой.

Существующие схемы построены на селективном растворении цветных ме­таллов, содержащихся в шламах. Благородные металлы при этом остаются в нерастворенном осадке, который направляют на аффинажное производство. Раствор, содержащий сульфаты цветных металлов, идет в основное производство. Во многих случаях для улучшения растворения цветных металлов шламы прохо­дят предварительную пирометаллургическую подготовку (обжиг, спекание, восстановительную плавку и т.д.).

Переработка шламов методом сульфатизации.

Метод основан на том, что сульфиды, оксиды и другие соединения цветных металлов при взаимодействии с концентрированной серной кислотой при темпе­ратуре выше 150°С образуют сульфаты, которые при последующем выщелачива­нии переходят в раствор:

MeS+4H2SO4=MeSO4+4H2O+4SO2;

MeO+H2SO4=MeSO4+H2O;

Me+2H2SO4=MeSO4+2H2O+SO2;

Me2S+6H2SO4=2MeSO4+6H2O+5SO2.

Благородные металлы должны концентрироваться в нерастворимом остатке. Технологическая схема сульфатизации шлама приведена ниже:

Влажный шлам

H2SO4

Репульпация

Сульфатизация

Выщелачивание

Фильтрация

Раствор Концентрат

в электролиз

никеля Щелочная

разварка

Фильтрация

Концентрат Раствор

платиновых на сброс

металлов

Согласно схеме, шлам репульпируется в серной кислоте при 60-90 °С в тече­ние 4-6 ч. При этом в раствор переходит до 30 % никеля и меди. Благородные металлы полностью остаются в твердом остатке, который подвергают сульфати­зации в течение 10-12 ч при температуре 250-300 °С. Сульфаты цветных металлов и железа выщелачиваются водой, а твердый остаток для удаления кремнекислоты обрабатывают в течение 4 ч 4 М раствором щелочи при 80-90 °С. Твердый остаток, содержащий до 30 % палладия и платины, направляют на аффинаж. Щелочный раствор после нейтрализации сбрасывают.

Эта схема имеет существенный недостаток - при температуре сульфатизации выше 200 °С иридий, родий и рутений более, чем на 95 % переходят в раствор.

Поэтому предложен способ двойной сульфатизации (см. Приложение №1, рис.2). Медный и никелевый шламы в принятых пропорциях поступают на первую стадию сульфатизации, проводимую при 180-190 °С. Никель, медь, же­лезо более, чем на 99 % переходят в раствор. Платиновые металлы практически полностью остаются в нерастворимом остатке. Концентрация платины в растворе не превышает 0.01 мг/л.

Нерастворимый остаток более, чем в 8 раз обогащается платиновыми метал­лами, тем не менее, содержание благородных металлов в нем недостаточно для проведения аффинажных операций. Поэтому его подвергают второй сульфатиза­ции при 270-300 °С, Т:Ж=1:5, при механическом перемешивании в течении 10-12 ч. Просульфатизированный материал выщелачивается водой при 80-90 °С. При этом достигается дополнительное обогащение нерастворимого остатка платино­выми металлами примерно в 2-3 раза.

Остаток после второй сульфатизации и выщелачивания подвергают обес­кремниванию разваркой в 5 М растворе щелочи при 100 °С. Потери благородных металлов со щелочным раствором не превышают 0.2 %. Этот раствор после нейтрализации сбрасывают. Полученный концентрат содержит 40-45 % плати­ноидов и идет на аффинаж.

Схема двойной сульфатизации обеспечивает достаточно высокое извлечение всех платиновых металлов в продукты, пригодные для аффинажных операций. Недостатками ее являются невысокая производительность сульфатизационного оборудования.

Переработка шламов сульфатизирующим обжигом и электролитическим растворением вторичных анодов.

На некоторых предприятиях обогащение шламов осуществляется с использо­ванием пирометаллургических операций. Одна из схем этого процесса приведена на рис. 3., Приложение №1.

Шлам никелевого электролиза смешивают со шламом медного электролиза, из которого предварительно удален селен, и эту смесь подвергают окислительно-сульфатизирующему обжигу в печи с механическим перемешиванием. Обжиг протекает в течении 10-14 ч при 550-600 °С. При этом сульфиды меди, никеля и железа переходят в сульфаты. Платина находится в огарке в виде свободных металлов.

Огарок после обжига выщелачивают 0.5-1.0 М H2SO4 при 80-90 °С и механи­ческом перемешивании. Сульфаты никеля, меди, железа переходят в раствор. Остаток обогащается в 2.5-3.5 раза. Платина в растворах после выщелачивания практически отсутствует.

Выщелочный огарок после сушки направляют на восстановительную плавку и отливку анодов. Плавку ведут в электропечи при 1700 °С. Полученные шлаки перерабатывают в обеднительных электропечах, а обедненные шлаки передают в медное или никелевое производство. Аноды, обогащенные платиновыми метал­лами, подвергают электролитическому растворению в сернокислом электролите. Продуктами электролиза являются: анодный шлам, катодная медная губка и никелевый раствор.

Для отделения вторичных шламов от медной губки аноды помещают в диа­фрагмы из фильтрованной ткани. Анодный шлам представляет собой богатый платиновый концентрат. Катодную медную губку растворяют в серной кислоте, в результате чего медь переходит в раствор, а остаток является другим концентра­том платиновых металлов.

Таким образом, технологическая схема обогащения шламов с использова­нием окислительно-сульфатизирующего обжига и электролитического растворе­ния вторичных анодов позволяет получить селективные концентраты, что значительно облегчает процесс аффинажа.

Аффинаж.

Концентраты платиновых металлов, полученные непосредственно из коренных руд или после переработки анодных шламов, и шлиховую платину из россыпных руд передают на аффинажные заводы для получения платиноидов. Технологические схемы аффинажа платиновых металлов насчитывают десятки взаимосвязанных операций с многочисленными оборотами растворов и полупро­дуктов, с постепенным выделением тех соединений, из которых непосредственно можно получить очищенные платиновые металлы.

Сырье для получения платиновых металлов.

Сырьем для получения платиновых металлов служат: шлиховая платина, извлекамая при разработке и обогащении россыпей, концентраты, выделяемые в результате обогащения и гидрометаллургической обработки анодных шламов электролиза никеля и меди, лом вторичных платиновых металлов и другие от­ходы.

Шлиховая платина - это смесь зерен самородной платины, представляющая собой сплав платиновых металлов с железом, медью, никелем и другими элемен­тами. Для шлиховой платины характерен следующий состав: до 85-90% Pt; 1-3% Ir; менее1% Rh и Ru; до 15% Fe.

Обогащенные анодные шламы содержат, %:

Pd……….35-45 Te……….1.5-2.5 Se………1.0-1.67

Pt………..15-20 Cu………0.7-2.5 Rh……….0.4-0.6

Ag………..8-10 Ni……….0.6-2.5 Ru…….0.08-0.15

S……….2.0-5.0 Au………1.5-2.0 Ir……...0.04-0.08

Fe………1.5-4.0

Переработка шлиховой платины.

Шлиховую платину вследствие высокого содержания в ней платины и отно­сительно малого количества загрязняющих элементов - серы и цветных металлов - перерабатывают по относительно простой схеме. Главнейшими операциями являются растворение, доводка растворов и избирательное осаждение отдельных платиновых металлов.

Первый этап переработки шлиховой платины - ее растворение в царской водке, которую готовят смешением соляной кислоты (плотность 1.12) и азотной (плотность 1.58) в объемном отношении 3 : 1. Вследствие высокой плотности шлиховой платины и быстрого оседания ее на дно реактора растворение осущест­вляют в чане с набором тарелок или при интенсивном перемешивании с помощью механических мешалок.

Вначале шлихи растворяют без подогрева, так как в первое время реакция растворения протекает весьма энергично, а затем (через 4-5 ч) подогревают до 110-120 °С, что ускоряет процесс растворения, который заканчивается примерно через сутки. Растворение платины идет по следующей реакции:

3Pt+4HNO3+18HCl=3H2[PtCl6]+4NO+8H2O.

В раствор переходит свыше 99% платины. Количество нерастворимого остатка обычно находится в пределах 4-6% поступающей на растворение массы шлиховой платины. В этом остатке содержится до 10% платины.

Для последующего избирательного осаждения платины в виде нераствори­мого хлороплатината аммония (NH4)2[PtCl6] необходимо предварительно перевести иридий (IV) и палладий (IV) соответственно в иридий (III) и палладий (III), иначе при осаждении платины хлористым аммонием иридий (IV) и палладий (IV) также выпадут в осадок в виде труднорастворимых соединений (NH4)2[PdCl6] и (NH4)2[IrCl6], загрязняющих платиновый осадок.

Раствор обрабатывают последовательно 5-, 12.5- и 25%-ным раствором хло­ристого аммония. При этом платина выпадает в осадок в виде хлороплатината:

H2[PtCl6]+2NH4Cl=(NH4)2[PtCl6]+2HCl

Полученный хлороплатинат отфильтровывают и промывают на фильтре 5%-ным раствором хлористого аммония. Осадок хлороплатината прокаливают в муфельных электропечах в течении 10-12 ч с постепенным повышением темпера­туры до 1000 °С. При этом образуется губчатая платина, содержащая примеси других металлов. Поэтому ее измельчают, повторно растворяют в царской водке и переосаждают в виде хлороплатината аммония.

Очищенная платиновая губка имеет светло-серый цвет с металлическим блеском: при ударе она должна мыться, не рассыпаясь в порошок. Платина по­ставляется потребителю в слитках.

Переработка вторичного платинусодержащего сырья.

Как правило, все разновидности платинусодержащего сырья перерабатывают на аффинажных и металлургических предприятиях. Сырьем для аффинажных заводов служат лом изделий из платины и сплавов благородных и цветных метал­лов; платиновые концентраты (не менее 10 % Pt), получаемые на заводах вторич­ных благородных металлов при переработке бедного сырья и т. п.

На металлургические заводы направляют сырье, сравнительно бедное по содержанию платиновых металлов, например, отработанные катализаторы неко­торых типов, содержащие 0.05-0.5 % Pt.

Переработку отработанных катализаторов на основе оксида алюминия условно осуществляют двумя методами обеспечивающими: 1) выделение основы (Al2O3) с получением концентрата благородных металлов; 2) извлечение благо­родных металлов, не затрагивая при этом основы.

К методам первой группы относятся различные варианты сульфатизации. Так называемая “сухая” сульфатизация осуществляется смачиванием материала концентрированной серной кислоты, взятой в трехкратном избытке по отноше­нию к твердому, и прокаливанием при 300 °С. Процесс осуществляют в подовых печах с механическим перегребанием или во вращающихся трубчатых печах. Охлажденный спек выщелачивают водой. Выход нерастворимого остатка состав­ляет 12-13 % массы исходного материала. При переработке катализатора АП-56 содержание платины в кеке выщелачивания повышается до 4.6-4.8 %. Если растворение спека вести в 10 %-ном растворе H2SO4, то содержание платины в полученном концентрате достигает 7.5-8.5 %.

В целях повышения качества концентратов предложена комбинированная технологическая схема, включающая предварительное сернокислотное выщела­чивание оксида алюминия в 10-20 %-ном растворе H2SO4, обжиг кека при 550-600 °С и повторное выщелачивание огарка в сернокислом растворе. Технология обес­печивает получение концентрата, содержащего до 20-22 % платины. В соответст­вии с другим вариантом этой технологии нерастворимый остаток первого выщелачивания смешивают с углем и нагревают в атмосфере, не содержащей окислителя, до 750-800 °С.

Полученный огарок подвергают второму сернокислотному выщелачиванию с получением 25-30 % платинового концентрата.

При реализации метода сульфатизации наблюдается частичный переход пла­тины в раствор. Это обусловлено присутсвием с исходном катализаторе сорбиро­ванного молекулярного хлора, вследствие чего при сульфатизации создаются условия для образования хлоридных комплексов платиновых металлов. Из-за наличия на поверхности носителя адсорбированных минеральных солей, напри­мер, галогенидов, возможно также растворение платины с участием в качестве окислителя кислорода воздуха. Особо следует отметить, что “сухая” сульфатиза­ция, проводимая в условиях высоких температур (300 °С), как правило, приводит к активной ионизации воднорастворимых соединений металла.

Из всех рассмотренных вариантов технологии сернокислотного обогащения только последний обеспечивает невысокий переход платины в раствор, что обу­словлено проведением обжига в восстановительной атмосфере.

К первой группе относятся также щелочные методы, основанные на способ­ности оксида алюминия взаимодействовать со щелочами с образованием водно­растворимых алюминатов натрия. Так, сплавлением отработанных катализаторов с NaOH и последующим выщелачиванием сплава в воде можно получить концентрат, содержащий 18-22 % Pt.

Спекание отработанных катализаторов с кальцированной содой при 1200-1250 °С, охлаждение и последующее выщелачивание в растворе едкого натра при 90-95 °С позволяют получать концентраты, содержащие от 14 до 34 % Pt.

Известен способ выщелачивания оксида алюминия в автоклаве раствором NaOH при 160-175 °С и давлении 0.6-0.7 МПа с получением концентрата, содер­жащего 8-9 % Pt.

Методами второй группы используются, в основном, приемы хлорной метал­лургии, в частности, перевод платины в раствор в виде хлоридного комплекса. Оксид алюминия при этом остается индиферрентным к воздействию хлор-агентов. Из раствора платиноиды осаждают цементацией алюминием, цинком или магнием.

Из отработанных катализаторов платина может быть извлечена плавкой на медный сплав. Для ошлаковывания тугоплавкого оксида алюминия в шихту вводят известь и плавиковый шпат CaF2, для образования коллектирующей фазы - порошковую медь. Плавку ведут при 1500-1550 °С. Медный сплав, в котором концентрируются платиновые металлы, направляют на аффинаж. Шлаки с невы­соким содержанием благородных металлов возвращают в рудный передел.

Производство и потребление.

Таблица 7.

Производство платины, кг.

Ñòðàíà

1960 ã.

1965 ã.

1970 ã.

1975 ã.

1980 ã.

1985 ã.

ÞÀÐ

8900

16 600

33 200

57 600

68 400

71 000

Êàíàäà

6500

6300

6200

5400

5400

4700

ÑØÀ

318

354

250

200

220

250

Практическое применение этот металл стал находить еще в начале прошлого века, когда начали изготавливать из него реторты для хранения концентрирован­ной серной кислоты. С тех пор платина служит материалом для тиглей, чашей, сеток, трубок и других лабораторных атрибутов.

Важнейшие области применения плотины – химическая и нефтеперерабаты­вающая промышленность. В качестве катализатора различных реакций использу­ется около половины всей потребляемой платины. Одним из важнейших катали­тических процессов является окисление аммиака с целью получения азотной кислоты (по оценочным данным на эти цели ежегодно идет 10-20% добываемой в мире платины). Точайшая сетка (до 5000 отверстий на квадратный сантиметр), сплетенная из платиновых проволочек, подобная тонкой ткани и столь же мягкая, как легкий шелк, составляет главную и ответственнейшую часть аппарата для окисления аммиака. Смесь аммиака с воздухом продувается через эту сетку, превращаясь в окислы азота и водяные пары. При растворении окислов азота в воде образуется азотная кислота. Большое количество платины расходуется также на изготовление кислото- и жароупорной аппаратуры химических заводов.

 íåôòåïåðåðàáàòûâàþùåé ïðîìûøëåííîñòè ñ ïîìîùüþ ïëàòèíîâûõ êàòàëè­çàòîðîâ íà óñòàíîâêàõ êàòàëèòè÷åñêîãî ðèôîðìèíãà ïîëó÷àþò âûñîêîîêòàíîâûé áåíçèí, àðîìàòè÷åñêèå óãëåâîäîðîäû è òåõíè÷åñêèé âîäîðîä èç áåíçèíîâûõ è ëèãðîèíîâûõ ôðàêöèé íåôòè.

Таблица 8.

Потребление платины по отраслям в США в количественном и процентном соотношениях.

Ïëàòèíà

1960 ã.

1965 ã.

1970 ã.

1975 ã.

1980 ã.

Âñåãî:

10 007

13 484

14 558

21 065

34 800

Пî îòðàñëÿì:

Àâòîìîáèëüíàÿ

-

-

-

-

-

-

8491

40%

15 200

44%

Õèìè÷åñêàÿ

2216

22%

4093

30%

4378

30%

4629

22%

5600

16%

Íåôòåïåðåðàáàòûâàþùàÿ

1109

12%

2526

19%

5595

38%

3359

16%

5500

16%

Ýëåêòðîòåõíè÷åñêàÿ

3325

33%

3322

25%

2562

18%

2290

11%

3800

11%

Ñòåêîëüíàÿ

1847

18%

1617

12%

1071

7%

1052

5%

2400

7%

Ìåäèöèíñêàÿ

494

5%

825

6%

217

2%

532

3%

1100

3%

Þâåëèðíàÿ

1016

10%

1101

8%

735

5%

712

3%

1200

3%

 àâòîìîáèëüíîé ïðîìûøëåííîñòè êàòàëèòè÷åñêèå ñâîéñòâà платины используют äëÿ äîæèãàíèÿ è îáåçâðåæèâàíèÿ âûõëîïíûõ ãàçîâ, ñ öåëüþ îñíàùåíèÿ àâòîìîáèëåé ñïåöèàëüíûìè óñòðîéñòâàìè ïî î÷èñòêå âûõëîïíûõ ãàçîâ îò âðåäíûõ ïðèìåñåé. Платина начинает окислять токсичные вещества выхлопа, начиная с 40 градусов по Цельсию, то есть сразу же после пуска двига­теля. И, что особенно важно, не боится перепадов температур и вибраций. Платина наносится тонким слоем на пористый керамический диск диаметром 127 миллиметров и толщиной чуть более карандаша. Мелкие поры этого диска обра­зуют поверхность более 60 квадратных метров. Для образования в них тончайшей пленки расходуется около 1,5 грамма драгоценного металла. Диск, облагорожен­ный платиной, помещается в коробку из нержавеющей стали, которая выдержи­вает нагрев до 800 градусов, и ставится у входа в глушитель. Такой катализатор превращает углеводороды, угарный газ в безобидную воду и углекислоту.

Ñòàáèëüíîñòü ýëåêòðè÷åñêèõ, òåðìîýëåêòðè÷åñêèõ è ìåõàíè÷åñêèõ ñâîéñòâ ïëþñ âûñî÷àéøàÿ êîððîçèîííàÿ è òåðìè÷åñêàÿ ñòîéêîñòü ñäåëàëè ýòîò ìåòàëë íåçàìåíèìûì äëÿ ñîâðåìåííîé ýëåêòðîòåõíèêè, àâòîìàòèêè è òåëåìåõàíèêè, ðàäèîòåõíèêè, òî÷íîãî ïðèáîðîñòðîåíèÿ. Используя лучшие качества металла, конструкторы создали целую гамму нагревателей, термопар, различных датчиков, работающих в агрессивных средах. Кроме того, платиново-иридиевые (3:1) контакты в прерывателях электрического тока васокого напряжения служат дольше и надежнее всех остальных. В компьютерах и ракетной технике, где нужна особая стабильность электрических характеристик, контакты делают из чистой платины.

Íåçíà÷èòåëüíàÿ ÷àñòü ïëàòèíû èäåò â ìåäèöèíñêóþ ïðîìûøëåííîñòü. Èç ïëàòèíû è åå ñïëàâîâ èçãîòîâëÿþò õèðóðãè÷åñêèå èíñòðóìåíòû, êîòîðûå, íå îêèñëÿÿñü, ñòåðèëèçóþòñÿ â ïëàìåíè ñïèðòîâîé ãîðåëêè. Специальные электроды из этого металла, вводимые в кровеносные сосуды, служат хирургам многих стран для диагностики различных, главным образом сердечных заболеваний. Такой метод называется платино-водородным, так как в основе его лежит элек­трохимическая реакция между этими элементами. Íåêîòîðûå ñîåäèíåíèÿ ïëàòèíû èñïîëüçóþò ïðîòèâ ðàçëè÷íûõ îïóõîëåé. Ïî ñòðóêòóðå áîëüøèíñòâî èç ýòèõ âåùåñòâ - ýòî íåýëåêòðîëèòû, цис-èçîìåðû, ïðîèçâîäíûå äâóõâàëåíòíîé ïëàòèíû. Ñàìûì ýôôåêòèâíûì ñîåäèíåíèåì ñ÷èòàåòñÿ цис-äèõëîðî­äèàìèíîïëàòèíà (II) [Pt(NH3)2Cl2]. Ýòî àêòèâíîå â õèìè÷åñêîì ñîîòíîøåíèè âåùåñòâî, â êîòîðîì èîíû Cl÷àñòè÷íî çàìåùàþòñÿ ìîëåêóëàìè âîäû ñ îáðàçîâàíèåì èîíà [Pt(NH3)2(H2O)2]2+. Ïðîöåññ èîíèçàöèè äèõëîðî­äèàìèíîïëàòèíû èäåò ãëàâíûì îáðàçîì â êëåòêàõ, ãäå êîíöåíòðàöèÿ õëîðèäîâ íèæå, ÷åì â ñûâîðîòêå êðîâè. Ïðîäóêò ãèäðîëèçà [Pt(NH3)2Cl2] ðåàãèðóåò ñ àçîòè­ñòûìè îñíîâàíèÿìè ÄÍÊ êàê áèôóíêöèîíàëüíûé àãåíò, âûçûâàÿ îáðàçîâàíèå ïîïåðå÷íûõ ñâÿçåé ìåæäó íèòÿìè ÄÍÊ. Ýòî ñëóæèò îñíîâíîé ïðè÷èíîé íàðóøåíèÿ äåëåíèÿ è ãèáåëè îïóõîëåâûõ êëåòîê. Äîïîëíèòåëüíûì ìåõàíèçìîì ïðîòèâîîïóõîëåâîãî äåéñòâèÿ äèõëîðîäèàìèíîïëàòèíû ÿâëÿåòñÿ àêòèâàöèÿ èììóíèòåòà îðãàíèçìà. Важное применение платине нашли американские врачи из штата Огайо. Они разработали принципиально новый метод анестезии, кото­рый заключается в следующем: платиновой пластинкой длиной несколько санти­метров спинной мозг соединяют с электрическим стимулятором, при малейшем движении пациента аппарат посылает электрический сигнал в мозг, блокируя таким образом болевые ощущения.

Платину применяют и зубные техники, которых привлекает ее неокисляе­мость – важнейшее свойство материала для протезов. В чистом виде платина слишком мягка, чтобы успешно выполнять эту роль, зато ее сплавы, обладающие высокой прочностью, успешно служат в качестве зубных коронок и искусствен­ных зубов. Сначала для повышения твердости к платине добавляли серебро и никель, затем для этой цели стали использовать золото и платиновые металлы, в союзе с ними коррозионностойкая платина обретает к тому же необычайную износостойкость.

Платина по-прежнему незаменима при изготовлении фильер для получения стекловолокна. В специальных тиглях из этого драгоценного металла выплавляют стекло, применяемое в лазерах и ддддддругих оптических приборах. Нанося тончайший слой этого металла на стекло, получают платиновые зеркала, обладающие так называемой односторонней прозрачностью: со стороны источ­ника света зеркало непрозрачно и отражает находящиеся перед ним предметы, как и обычное зеркало. Но с теневой стороны оно прозрачно, как стекло, и, таким образом, можно увидеть все, что находится по другую его сторону.

Плодотворно трудится платина и в сфере измерения высоких температур. В технике довольно широко применяют платиновые термометры сопротивления. Принцип их действия основан на том, что при нагревании электрическое сопро­тивление платины возрастает по очень строгой и постоянной зависимости от температуры. Подключенная к прибору, регистрирующему изменение сопротив­ления, платиновая проволочка без промедления сигнализирует ему о самых незначительных колебаниях температуры. Еще более распространены так назы­ваемые термопары – несложные, но очень чуткие термоизмерительные приборы. Если спаять две проволочки из разных металлов, а затем нагреть место спая, то в цепи появится электрический ток. Чем выше температура нагрева, тем большая электродвижущая сила возникает в цепи термопары. Для изготовления этих приборов часто используют платину и ее сплав с родием или иридием.

Таблица 9.

Цены на платину, доллар за 1 тройскую унцию.

1960ã.

1965ã.

1970ã.

1975ã.

1980ã.

1985ã.

íîÿáрь 1994

íîÿáрь 1995

83,5

98

132,5

170

420

480

407-416

406-407

Ðîñò ñïðîñà íà ïëàòèíó â ìèðå ÿâëÿåòñÿ çàëîãîì âûñîêèõ öåí. Ïî îöåíî÷íûì äàííûì êðóïíåéøåé â ìèðå êîìïàíèè ïî ìàðêåòèíãó ìåòàëëîâ ïëàòèíîâîé ãðóïïû Johnson Matthey (JM) ñïðîñ íà ïëàòèíó âûðîñ â 1994 ãîäó íà 7% è äîñòèã óðîâíÿ â 4.32 ìëí òðîéñêèõ óíöèé. Ïðè ýòîì ñ 1993 ãîäà ñîêðàùàåòñÿ ïîòðåáëåíèå ïëàòèíû â ïðîìûøëåííîñòè. Îäíàêî ðîñò çàêàçîâ þâåëèðîâ è àâòîìîáèëåñòðîèòåëåé ïåðåêðûâàåò ýòî ñîêðàùåíèå. Так в ювелирном производ­стве потребление платины оценивается в 50 тонн. Âòîðîé ôàêòîð ïîâûøåíèÿ ñïðîñà íà ýòîò ìåòàëë - ðîñò èñïîëüçîâàíèÿ åãî â àâòîêàòàëèçàòîðàõ. Çà ýòî ðûíîê ïëàòèíû äîëæåí áûòü áëàãîäàðåí ïàðòèè çåëåíûõ, ïîñêîëüêó èìåííî ââåäåíèå áîëåå ñòðîãèõ ìåð ïî îãðàíè÷åíèþ âðåäíûõ âûáðîñîâ â àòìîñôåðó ïðèâåëî ê òîìó, ÷òî ïî÷òè âñå íîâûå àâòîìîáèëè îñíàùàþòñÿ àâòîêàòàëèçàòîðàìè.

Таблица 10.

Потребление платины в мире в 1993 году (по информации Johnson Matthey).

Íåôòåïåðåðàáîòêà

12 %

Þâåëèðíàÿ ïðîìûøëåííîñòü

30 %

Èíâåñòèöèè

8 %

Ïðîèçâîäñòâî ñòåêëà

3 %

Ýëåêòðîòåõíèêà

4 %

Õèìè÷åñêàÿ ïðîìûøëåííîñòü

5 %

Àâòîêàòàëèçàòîðû

35 %

Äðóãèå

3 %

Бедность платиновых руд, отсутствие крупных месторождений и отсюда высокая стоимость металла, в значительной степени ограничивают практическое применение платины.


- Приложение №1…………………………………….………………….23

- Рис.1………………………………………………….23

  • Рис.2………………………………………………….24

  • Рис.3………………………………………………….25

- Приложение №2. Словарь терминов……...…………………………..26

Приложение №1.

Рис.1. Технологическая схема переработки сульфидных медно-никелевых руд.

Ðóäà

Îòâàëüíûå õâîñòû

Обогащение

Ìåäíûé êîíöåíòðàò Íèêåëåâûé êîíöåíòðàò

Ãàçû

Обжиг íà ïðîèçâîäñòâî Окатывание или агломерация

H2SO4


Отражательная Газы

плавка

Пылеулавливание

Îòâàëüíûé Øòåéí

øëàê Ãàçû Ïûëü


Конвертирование Агломерат или окатыши


Черновая Электроплавка

медь

Штейн Шлак

Огневое

рафинирование

Шлак Конвертирование Флотация


Файнштейн Хвосты

в отвал

Аноды Медный Разделение Концентрат

концентрат

Электрорафинирование

меди Никелевый концентрат

Пыль

Электролит Катоды

Магнитная Обжиг Газы

фракция

Пыль

Закись никеля

Шлам Пылеулавливание

Восстановительная

плавка

Газы

Аноды


Электролит Электрорафинирование Катодный

на очистку никеля никель


Шлам

Обогащение

Ïëàòèíîâûå

êîíöåíòðàòû

íà àôôèíàæ

Рис. 2. Принципиальная технологическая схема переработки медных и нике­левых шламов методом двойной сульфатизации.



Н икелевый шлам Медный шлам

H2SO4 Пары, газ


1ая сульфатизация

180 °С, Т:Ж=1.5, =8-9 ч

H2O


Выщелачивание

[H2SO4]=250 г/л, 80-90 °С,=3 ч


Фильтрация

Раствор Кек I

H2SO4


Пары, газ

В основное

производство 2ая сульфатизация

t=300 °С, Т:Ж=1:4, =10 ч

H2O FeSO4


Выщелачивание


Фильтрация

Раствор Кек II

NaCl Пары, газ


Осаждение AgCl Сушка, прокаливание


Фильтрация Щелочная разварка Производство

t=90 °С, =1 ч Se

A gCl Т:Ж=1:5, 400 г/л NaOH

Раствор Сера

Разбавление водой

О саждение спутников Pt до 150 г/л NaOH

Фильтрация Фильтрация, промывка

Осадок

Фильтрат Нерастворимый остаток Раствор

Сушка, на

Производство Te прокаливание Сушка, прокаливания, сброс

измельчение, упаковка

Концентрат ПК-2

Концентрат ПК-1 Pt, Pd, Au

Рис. 3. Технологическая схема обогащения шламов.



Никелевый и медный шламы после извлечения селена



Окислительно-сульфатизирующий обжиг

Огарок Газы


Растворение Мокрая газоочистка

Осадок Раствор Раствор Кеки


Сушка Na2CO3

Ванны обезмеживания

Электроплавка Нейтрализация

Медь в медное

Шлак Аноды производство Раствор

в переработку на сброс

Раствор NiSO4

В никелевое производство

Электролитическое растворение

Шлам H2SO4 Медная губка Ni порошок Раствор


Промывка Выщелачивание Цементация


Сушка Раствор Цементат


1й концентрат H2SO4 Экстракция

Выщелачивание Органическая

фаза

Остаток

Отгонка

Промывка

Прокаливание

Сушка Раствор в ванны

обезмеживания 3й концентрат

2й концентрат

Приложение №2.

Словарь терминов.

Автоклав - (авто+ключ) аппарат для проведения различных процессов при нагреве и под газовым давлением выше атмосферного.

Агломерат - основное сырье для черновой и цветной металлургии при получении металлов (сплавов) из руд.

Агломерация - термический способ окускования мелких метериалов, чаще всего рудной шихты, для улучшения их металлургических свойств. Нагрев осуществляется обычно за счет сжигания мелкого топлива в самом обрабатываемом материале при непрерывном подсосе воздуха. В агломерационную шихту часто вводят флюсы (известняк). Окускование при агломерации происходит главным образом в результате связывания отдельных зерен легкоплавкой жидкостью, образовавшейся при нагреве, и формирования кусков при охлаждении. Агломерацию осуществляют преимущественно на агломерационных машинах ленточного типа, представляющих собой непрерывную цепь тележек с решетчатым дном. Продукт агломерации - агломерат.

Десульфурация - обессеривание - физико-химические процессы, способствующие удалению серы из расплавленного металла. Сера связывается в прочные сульфиды и переходит в шлак.

Кек - твердый остаток после фильтрации пульпы. Чаще всего содержит 12-20 % влаги.

Окатыши - продукт окусковывания пылевидной руды или концентратов путем окомкования и обжига. Имеют форму шариков диаметром 10-20 мм, прочность их оценивается усиливанием раздавливания. При изготовлении офлюсованных окатышей в шихту добавляют известь (CaO).

Платиновые металлы - химические элементы VIII группы периодической системы Менделеева: рутений Ru, родий Rh, палладий Pd, осмий Os, иридий Ir и платина Pt. Серебристо-белые металлы с различными оттенками. Благодаря высокой химической стойкости, тугоплавкости и красивому внешнему виду платиновые металлы, наряду с серебром и золотом, называются благородными металлами. Для земной коры характерно самородное состояние платиновых металлов.

Платина самородная - минерал класса самородных элементов. Примеси железа (до 10% в коликсене, до 20% в ферроплатине), иридия, палладия, родия, меди. Цвет от белого до серо-стального. Твердость по минералгической шкале 4-4.5; плотность до 21 000 кг/м3. Главный источник получения платины.

Платиновые сплавы - сплавы платины (основа) обычно с другими благородными металлами, чаще всего с родием (до 40%), палладием (до 50%), иридием, а также никелем, кобальтом, хромом, вольфрамом и молибденом. Характеризуются высокой коррозийной стойкостью во многих агрессивных средах, высокими механическими свойствами, в ряде случае каталитическим действием. Применяются для электрических контактов, термопар, в качестве жаропрочных и коррозионностойких материалов в химической и других отраслях промышленности.

Платиновые руды - минеральные образования, содержащие платиновые металлы в промышленных концентрациях. Главные минералы: самородная платина, поликсен, ферропла­тина, платинистый иридий, невьянскит, сысертскит и др. Коренные месторождения преимущественно магматического происхождения содержат от десятых долей г/т до единиц кг/т; россыпи - от десятков мг/м3 до сотен г/м3. Главные добывающие страны: ЮАР, Канада, Колумбия, США.

Платиновая чернь - мелкодисперсный порошок (размеры крупинок 25-40 мкм) металлической платины, обладающий высокой каталитической активностью. Ее получают, дейст­вуя формальдегидом или другими восстановителями на раствор комплексной гексахлорплатино­вой кислоты H2[PtCl6].

Платина шлиховая - смесь зерен самородной платины, представляющая собой сплав платиновых металлов с железом, медью, никелем и другими элементами.

Платиноиды - то же, что платиновые металлы.

Пульпа - смесь твердых частиц и жидкости, в которой они взвешены. При обогащении руд и минералов пульпой называется смесь тонкоизмельченного сырья с водой, в гидрометаллургии - смесь подвергаемых обработке материалов с водой или химическими реагентами.

Рафинирование металлов - удаление из жидких металлов и сплавов примесей неметалли­ческих включений, газов для повышения качества и получения ценных сопутствующих элементов. Применяют пирометаллургические (рафинирующие переплавы), химические, физико-химические (адгезионные), электролитические, физико-механические (флотационные, барботажные) методы рафинирования.

Сепарация - отделение жидких или твердых частиц от газа, твердых - от жидкости, разделение на составные части твердых или жидких смесей. Сепарация широко используется при обогащении руд и рудных минералов.

Файнштейн - безжелезистый сульфид меди или никеля, получаемый при бессемеровании штейнов и используемый для извлечения цветных (в том числе благородных) металлов. В зависимости от содержания тех или иных цветных металлов различают файнштейн медный - Cu2S (называют также белым маттом), никелевый Ni3S2, медноникелевый Cu2SNi3S2.

Флотация - способ обогащения, основанный на различной смачиваемости минералов водой. Для успешной флотации активность поверхности минералов повышается флотационными реагентами. Различают флотацию маслянную, пленочную, пенную (основной метод обогащения полезных ископаемых), при которой частицы одних минералов прилипают к воздушным пузырькам и переходят вместе с ними в пенный слой (концентрат), а другие - остаются во взвешенном состоянии в воде (хвосты).

Флюсы в металлургии - материалы, преимущественно минерального происхождения, вводимые в печь (шихту) для образования шлака и регулирования ее состава, в частности, для связывания пустой породы руды или продуктов раскисления металла. По химическому составу флюсы делятся на основные (известняк), кислые (кремнезем), нейтральные (глинозем) и солевые (хлоридно-фторидные). При плавке сплавов цветных металлов используют флюсы покрывные (защитные), рафинирующие и модифицирующие.

Шихта - 1. Смесь сырых материалов, подлежащая переработке в металлургических агрегатах. Шихту загружают либо в виде смеси с равномерным распределением, проведенным вне агрегата, либо порциями или слоями, состоящими из разных компонентов шихты; 2. Набор метал­лических компонентов для выплавки сплавов методом переплава.

Шлак металлургический - расплав (после затвердевания - камневидное или стекловидное вещество), обычно покрывающий при плавильных процессах поверхность жидкого металла. Состоит из специально вводимых в печь флюсов, а также из всплывших продуктов химических реакций, подлежащих удалению из металла примесей, золы топлива, разрушаемой футеровки. В зависимости от преобладания тех или иных оксидов шлак может быть основным или кислым. Шлак играет важную роль в металлургических процессах: защищает покрываемый им металл от вредного воздействия газовой среды печи, усваивает всплывающие примеси и неметаллические включения и выполняет другие разнообразные физико-химические функции.

Штейн - промемежуточный продукт при получении некоторых цветных металлов из их сульфидных (сернистых) руд и рудных концентратов. Представляет собой сплав сульфидов железа с сульфидами извлекаемого металла.

Эвтектика - структура сплавов, состоящая из определенного сочетания двух (или более) твердых фаз, одновременно кристаллизовавшихся из расплава при температуре ниже температуры плавления отдельных компонентов эвтектической смеси. Теория кристаллизации эвтектик разработана А. А. Бочваром. Кристаллизация эвтектического сплава (эвтектическое превращение) протекает при постоянной температуре.

Список литературы:

  1. «Рассказы о металлах». С.И. Венецкий. Издательство «Металлургия». Москва, 1985 г.

  2. «Элементы вселенной». С. Гридчин, А. Гридчин. Центрально-черноземное книжное издательство. Воронеж, 1980 г.

  3. «Мир металлов и сплавов». Г.Н. Фадеев, А.П. Сычев. Издательство «Просве­щение». Москва, 1978 г.

  4. «От водорода до… Нобелия?». П.Р. Таубе, Е.И. Руденко. Государственное издательство Высшая школа. Москва, 1961 г.

  5. «Общая химия: Учебное пособие для вузов». Н.Л. Глинка. Издательство «Химия», 1977 г.

  6. «По следам элементов». З. Энгельс, А. Новак. Издательство «Металлургия». Москва, 1985 г.

  7. «Популярная библиотека химических элементов». Под редакцией И.В. Перянова-Соколова. Издательство «Наука», 1977 г.

  8. «Творцы науки о металле». А.С. федоров. Издательство «Наука». Москва, 1980 г.

  9. Финансовые известия №83 (212), 31 октября 1995 г.

  10. Большая Медицинская Энциклопедия (БМЭ).

  11. Советский энциклопедический словарь. Издательство «Советская энциклопе­дия». Москва, 1982 г.

  12. Политехнический словарь.

  13. «Краткий терминологический словарь по металлургии». Под редакцией доц. В.П. Соловьева. Издательство МИСиС. Москва, 1988 г.

  14. «Металлургия благородных металлов». Под редакцией Л. В. Цугоева. Издательство «Металлургия». Москва, 1987 г.




Характеристики

Тип файла
Документ
Размер
313 Kb
Материал
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее