METHODIC (739403), страница 2
Текст из файла (страница 2)
· домашнее задание межпредметного характера – постановка вопросов на размышление, подготовка сообщений, рефератов, изготовление наглядных пособий, составление таблиц, схем, кроссвордов, требующих знаний межпредметного характера.
· межпредметные наглядные пособия – обобщающие таблицы, схемы, диаграммы, плакаты, диаграммы модели, кодопозитивы. Они позволяют учащимся наглядно увидеть совокупность знаний из разных предметов, раскрывающую вопросы межпредметного содержания.
· химический эксперимент – если предметом его являются биологические объекты и химические явления, происходящие в них.
Использование межпредметных связей вызвало появление новых форм организации учебного процесса: урок с межпредметными связями, комплексный семинар, комплексная экскурсия, межпредметная экскурсия и др.
Уроки с межпредметным содержанием могут быть следующих видов: урок-лекция; урок-семинар; урок-конференция; урок-ролевая игра; урок-консультация и др.
· уроки межпредметного обобщения или тематические задания – проблема педагогики и методики как соединить знания с практической полезной деятельностью. Научить применять знания.
Суть тематического планирования заключается в следующем: группам учащихся дается задание разработать рекомендации по использованию удобрений, веществ, реакций относительно данной местности. Эти задания имеют МПС и готовятся совместно с учителями биологии, географии, черчения, рисования – это бинарные уроки.
Ход проведения: группа из 4-6 человек выбирает руководителя проекта, специалистов (биолог, агроном, чертежников, художник-оформитель), определяет задания каждому ученику. Группы собираются и отчитываются о работе.
Каждой группе дается своеобразное домашнее задание, которое будет завершено защитой своих работ. Вначале такого урока – краткая беседа учителя, в ходе которой ставится цель, представляются учащиеся, определяется порядок защиты. Затем идут выступление групп – в виде краткого отчета о проделанной работе (демонстрация рисунков, таблиц). Далее идет обсуждение выступлений; учитель продумывает со своими коллегами трудовое задание. Обязательно прослеживается связь с окружающей средой.
По этим урокам можно сделать вывод:
1. Все уроки связаны педагогической логикой.
2. Строго выполняется учителем тема по программе.
3. Включено обязательно решение задач.
4. Главное достоинство – ученики учатся учиться по указанию учителя.
5. Но самое главное – все задания выполняются самостоятельно.
Конкретные примеры – в приложении 1 дипломной работы.
1.3 Межпредметные связи в процессе изучения химии в 9 классе
Отражение межпредметных связей и определение содержания в программах : а) для обычных классов без специализации – программа курса химии для 8-11 классов средней общеобразовательной школы – разработана в лаборатории химического образования Института общеобразовательной школы РАО – Москва “Просвещение” 1993 год, тема “Подгруппа углерода” – 7 часов. б) программа курса неорганической химии для 8-9 классов химико-биологического профиля (авторы: Н.Е. Кузнецова, Г.П. Никифорова, И.М. Титова, А.Ю. Жегин) на тему “Неметаллические соединения и их важнейшие химические соединения” отводится 50 часов, на тему “Углерод и его соединения” – 16 часов, является своевременным и важным положением в системе обучения учащихся, поскольку методически обоснованное осуществление межпредметных связей в процессе изучения школьных дисциплин способствует повышению качества знаний учащихся, развитию их мыслительной деятельности.
Реализация межпредметных связей при изучении химии является одной из форм логического повторения, углубления и совершенствования приобретенных знаний.
Поскольку межпредметные связи обеспечивают привлечение учащимися на уроках знаний из области других предметов, важно с учетом требований программ выделить наиболее общие, устойчивые и долговременно действующие межпредметные понятия. Примером таких понятий могут быть понятия о составе, строении, химических свойствах и биологических функциях веществ. При отборе и использовании межпредметной информации важно не нарушить логику построения учебных предметов и не допускать перегрузки их содержания.
Способы привлечения знаний из других предметов различны. Можно предложить учащимся при подготовке к занятиям восстановить в памяти ранее изученные вопросы. В отдельных случаях учитель при изложении нового материала сам напоминает сведения, полученные при изучении других предметов, включая при этом учащихся в активную беседу. Опыт учителей-методистов показывает, что установление взаимосвязей между предметами успешно проходит при включении в содержание урока (или в задание на дом) примеров и задач межпредметного характера.
Для того, чтобы успешно реализовать межпредметные связи в учебной деятельности, учитель химии должен прежде всего овладеть содержанием соответствующих дисциплин.
Конкретизация использования межпредметных связей в процессе обучения достигается с помощью поурочного планирования. Последнее осуществляется с учетом вида урока с межпредметными связями:
-
фрагментальный, когда лишь фрагменты, отдельный этап урока, требует реализации связей с другими предметами;
-
узловой, когда опора на знания из других предметов составляет необходимое условие усвоения всего нового материала или его обобщения в конце учебной темы;
-
синтезированный, который требует синтеза знаний из разных предметов на протяжении всего урока и специально проводится для обобщения материала ряда учебных тем или всего курса.
Поурочный план – разработка показывает, когда, на каком этапе урока и как, какими способами, включаются знания из других курсов в изучении нового или закрепления учебного материала. Особенно необходима тщательная разработка обобщающего урока с межпредметными связями. Выделение таких уроков производится на основе тематического планирования. Поурочное планирование может быть выполнено в виде плана конспекта или в виде таблицы
| этапы урока | вопросы МП содержания | методы и приемы | средства наглядности | внутрипредметные и межпредметные связи |
Составляя поурочные планы, учителю важно знать, что учащиеся уже усвоили из необходимых опорных знаний на уроках по другим предметам, согласовать с учителями смежных предметов постановку вопросов и заданий, чтобы избежать дублирования и достигнуть развития общих идей и понятий, их углубления и обогащения. Этому помогает взаимопосещение уроков и изучение составляемых коллегами планов реализации межпредметных связей.
Таким образом, планирование составляет необходимое и существенное условие подготовки учителя к эффективному осуществлению межпредметных связей и является одним из средств их реализации в практике обучения школьников.
Предлагаю тематическое планирование по теме “Подгруппа углерода” в курсе химии 9 класса в приложении 2.
1.4 О связи обучения химии и географии
Помимо межпредметных связей между химией, биологией, учителя используют и сведения из географии. В 8 классе во время объяснения состава воздуха и его применения можно использовать знания учащихся об атмосфере, полученные ими на уроках географии. Восьмиклассники могут дать правильные ответы на вопросы: какое значение имеет атмосфера для живых организмов? Назовите атмосферные слои, расскажите о составе воздуха. Затем учитель сам дополняет рассказ о составе воздуха и его применении.
Проблема парникового эффекта
При изучении свойств воды задаем учащимся следующие вопросы:
1. На какие группы подразделяются материковые воды? Отмечаем, что образование горячих источников связано с остыванием вулканов, в процессе которого из их сопел начинают бить гейзеры. Подчеркиваем, что возникновение гейзеров не связано с какими-то божественными силами. Учащиеся узнают о значении воды в жизни человека, ее химическом составе и получении чистой воды.
2. Расскажите об очистке природной воды.
3. Какое значение имеет очистка питьевой воды?
4. Где используют воду?
В 9 классе при изучении минеральных удобрений используем знания учащихся по экономической географии. Ученики рассказывают о значении минеральных удобрений для повышения урожайности сельскохозяйственных культур, о роли химии в развитии животноводства. После этого дополняем более подробными сведениями материал о свойствах минеральных удобрений и их разновидностях. Выделяется удобрение мочевина CO(NH2)2 и его роль в питании животных.
Во время изучения основных видов горючего 10 класс 5 тема “Природные углеводороды” предлагаем учащимся следующие вопросы:
1. Назовите крупнейшие месторождения каменного угля.
2. Расскажите о месторождениях нефти.
3. Где находятся крупные месторождения природного газа?
Ученики показывают на географической карте где находятся эти месторождения.
При знакомстве в 10 классе с каучуком учащиеся вспоминают страны – основные производители натурального каучука: Бразилию, Индонезию.
В декаду естественных наук можно организовать турнир знатоков, в который можно включить вопросы по химии и географии – в приложении 4.
1.5 Межпредметные связи неорганической, органической химий и физики.
“Химик без знания физики подобен
человеку, который всего должен искать
ощупом. И сии две науки так соединены
между собой, что одна без другой в
совершенстве быть не могут”
М.В. Ломоносов.
Эти слова подтверждаются делом учителями-методистами, когда первые химические понятия строятся на тех знаниях учеников, которые они получают на уроках физики.
8 класс. При изучении темы “Первоначальные химические понятия” можно использовать знания учащихся важных понятий, сформированных в курсе физики 7 класса. К ним относятся: тело, вещество, атом, молекула, физические и химические явления, внутренняя энергия, температура. Из курса физики учащимся известны также общие сведения о строении твердых тел, жидкостей и газов, положения молекулярно кинетической теории.
Необходимо учитывать, что большинство физических понятий находятся в процессе формирования, а поэтому на данном этапе обучения учащихся эти понятия сформированы еще недостаточно строго. Это относится и к таким изначальным понятиям, как тело и вещество. Под физическим телом учащиеся понимают каждое из окружающих тел, а под веществом – один из видов материи.
Достаточно полное представление получили учащиеся в 7 классе на уроках физики о молекулах. Они узнали, что молекулы – мельчайшие частицы вещества, кроме того им известно, что молекулы одного вещества одинаковы, что они находятся в непрерывном движении. На уроках химии это понятие углубляется, расширяется.
На уроках физики учащиеся знакомятся с понятием массы вещества, которое вводится в процессе анализа опыта по взаимодействию тележек. Этот опыт исключает в дальнейшем путаницу в понятиях вес тел, их масса.
В 7 классе начинается формирование первых представлений об энергии. Учащиеся узнают, что энергию, определяемую взаимным расположением тел, называют потенциальной, а энергию движущихся тел – кинетической. Каждое тело, состоящее из большого числа частиц (атомов и молекул) обладает внутренней энергией, характеризующейся суммой кинетической и потенциальной энергий всех частиц.
Углубленное изучение энергетики химических реакций осуществляется по учебнику Ахметова “Химия, 8-9”.
Энергетика химических реакций.
Знание закономерностей химических реакций позволяет прогнозировать их протекание. Можно получать вещества с требуемыми свойствами.
Для изучения данной темы необходимо повторить с учащимися материал из курса физики, касающийся закона сохранения и превращения энергии.
При химическом превращении, т.е. в период протекания химической реакции происходит перестройка электронных структур атомов, ионов, молекул. Поэтому химическая реакция всегда сопровождается энергетическими изменениями.
Тепловые эффекты реакций можно определить и экспериментально, и с помощью термохимических расчетов.
В основе данных расчетов лежит закон, сформулированный Г.И. Гессом. Даем формулировку данного закона и приводим пример, давая пояснения: “Тепловой эффект реакции зависит от вида и состояния исходных веществ и конечных продуктов и не зависит от пути процесса”. В качестве примера возьмем реакцию полного сгорания угля:
C(k) + O2(r) ® CO2(r); DH1 = -393,5 кДж
Предлагаем учащимся допустить, что данный химический процесс протекает в две стадии.
I стадия – при горении угля образуется оксид углерода (II) CO:
C(k) + 1/2 O2(r) ® CO(r); DH2 = -110,5 кДж
II стадия – при сгорании CO образуется оксид углерода (IV) CO2:
CO2(r) + 1/2 O2(r) ® CO2(r); DH3 = -283,0 кДж
Суммируем эти две стадии:
C(k) + 1/2 O2(r) ® CO(r); DH2 = -110,5 кДж
CO2(r) + 1/2 O2(r) ® CO2(r); DH3 = -283,0 кДж
¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾
C(k) + O2(r) ® CO2(r)
DH2 + DH3 ® -110,5 кДж + (-283,0 кДж) = -393,5 кДж
Исходя из закона Гесса тепловые эффекты образования CO2 и из простых веществ и через промежуточную стадию образования и сгорания CO равны:
DH1 = DH2 + DH3 = -393,5 кДж
Если бы тепловые эффекты не были бы равны, то нарушался бы закон сохранения энергии. В качестве подтверждения наших рассуждений приводим диаграмму на рис. 4.
E
C(k) + O2(r)
DH2 = -110,5 кДж















