larina (739356), страница 2
Текст из файла (страница 2)
Получение чистого металла из сырого путем удаления примесей является целью металлургических процессов - афинажа и рафинировния. Методы афинажа различны у разных металлов, т.к. они могут основываться на окислении и восстановлении примесей, на ликвации (примеси с более высокой температурой плавления остаются нерастворенными), на агрегации (примеси с более низкой температурой плавления выделяются селективным отверждением), на адсорбции (примеси адсорбируются без участия химической реакции).
Сырая медь, полученная металлургически, содержит 93-98,5% меди и загрязнена кислородом, железом, мышьяком, сурьмой, висмутом, кобальтом, оловом, серой и, возможно, серебром, золотом, платиной. Свинец, сера, селен, теллур, висмут и кислород - примеси, вредные для меди, а мышьяк, фосфор, никель, железо, марганец и кремний улучшают ее механические свойства. Для очистки сырой меди от примесей ее подвергают рафинированию, которое осуществляется двумя способами - пирометаллургическим и элекрохимическим. При пирометаллургическом окислении сырую медь расплавляют в отражательной печи, в которую вдувают сжатый воздух. В результате происходит частичное окисление таких элементов как сера, железо, никель, цинк, кобальт, олово, свинец, мышьяк, сурьма и связывание диоксида кремния с превращением в шлак. При нагревании расплава оксид серы (IV) полностью улетучивается, частично удаляются As2O3 и Sb2O3, а большая часть сурьмы остается в меди.
Медь, рафинированная пирометаллургически содержит примеси Cu2O, Bi, Sn, иногда Ag, Au, Pt и платиновые металлы. Из такой меди отливают аноды, для дальнейшего получения электролитической меди.
Электролизерами для электролитической очистки меди служат бетонные чаны со стенами, обложенными свинцовыми пластинами. В них наливают электролит - раствор сульфата меди с серной кислотой и добавкой сульфата натрия. В электролизер помещают аноды из пирометаллургически полученной меди и катоды из чистой меди. При пропускании тока на катоде осаждается чистая медь, а аноды растворяются в процессе окисления. Неметаллические примеси и металлы, менее активные, чем медь (Ag, Au, Pt, платиновые металлы), находящиеся на анодах выпадают в виде шлама на дно электролизера. При электролизе водного раствора сульфата меди на катоде осаждается чистая медь, а на аноде выделяется кислород.
CuSO4 ® Cu2+ + SO42- (8)
H2O ¨ H+ + OH- (9)
На катоде: Cu2+ + 2e ® Cu0
На аноде: 2OН- - 2e ® 1/2O2 + H2O
-
Коррозионное и электрохимическое
поведение меди.
В атмосферных условиях в отличие от многих других металлов, медь не подвергается коррозии, так как на ее поверхности образуется тонкий ровный слой (пленка) продуктов коррозии, не содержащая никаких агрессивных соединений, способных при каких-либо условиях разрушать металл. Коррозия меди в атмосферных условиях - процесс самопроизвольно затухающий, так как продукты коррозии защищают поверхность металла от внешней среды.
В воде и нейтральных растворах солей медь обладает достаточной устойчивостью, которая заметно снижается при доступе кислорода и окислителей. В морской воде, аэрируемой при малой скорости движения, медь характеризуется небольшим равномерным растворением (порядка 0,05 мм/год). При высоких скоростях течения жидкости, а также ударах струи скорость коррозии меди сильно повышается [3].
Имеются данные о влиянии pH среды на депассивацию меди [4] в хлоридсодержащих боратных буферных растворах. Установлено, что всем исследованном интервале рН при анодной поляризации медь переходит в пассивное состояние. При увеличении рН боратного буфера стационарный потенциал, потенциал пассивации и плотность тока пассивации уменьшается, т.к. изменяется структура, толщина и состав оксидной пленки на меди. В среде, близкой к нейтральной пассивирующая пленка состоит из оксидов Cu (I) и Cu (II), а в щелочной среде - в основном из оксида меди (I) и очень тонкой пленки оксида меди (II). В последнем случае толщина пленки меньше, а пористость больше. При увеличении рН в хлоридсодержащих боратных буферах потенциал питтиногообразования снижается (разблагораживается), что связано как с изменением происходящими в оксидной пленке, так и с тем, что начальные стадии депассивации меди протекают через образование смешанных гидроксокомплексов. При постоянном значении рН потенциал питтингообразования не зависит от концентрации NaC1. Предложена схема механизма начальных стадий инициирования питтингообразования меди в хлоридсодержащих боратных растворах, согласно которой лимитирующей стадией является диссоциация гидроксида Cu(ОН)2, а нуклеофильное замещение пассивирующего лиганда в поверхностном комплексе анионом-активатором протекает по диссоциативному механизму.
В [5] приведены данные по коррозионному поведению меди М1 в 3% растворе хлорида натрия в сравнении с естественной морской водой, совокупность которых позволила авторам сделать вывод, что основным анодным процессом при коррозии меди в 3 % растворе NaC1 и морской воде является ее окисление в закись с последующим химическим растворением последней. Контролирующей стадией является отвод ионных форм меди (Сu+, CuCl2-, CuCl32-) в электролит.
В хлоридных растворах с рН=0,5, содержащих ионы двухвалентной меди, по данным [6] при катодной поляризации наблюдается компонента скорости растворения, независимая от потенциала за счет процесса репропорционирования:
Cu + Cu2+ ® 2Cu+ (10)
Медь весьма склонна к комплексообразованию. Например, в нейтральных хлоридных средах эффективный заряд переходящих в раствор ионов (mэфф) меди равен 1±0,01 [7]. Предложен следующий стадийный механизм растворения меди c двумя возможными маршрутами ионизации :
б) Cu ® Cu+ + e (12)
_________________________
Широкое применение в различных отраслях химической промышленности нашло химическое и электрохимическое травление меди. В медно-аммиачных травильных растворах, содержащих NH3 и NH4C1 [8], установлена следующая последовательность формирования пассивирующих слоев с ростом потенциала: СuC12, Cu2O, CuO (при определенных условиях), CuC12.3Cu(OH)2 и CuC12 . 2NH4C1.H2O, либо их смесь. Различными электрохимическими и рентгенографическими методами было показано, что интенсивное вращение электрода удаляет лишь рыхлую часть продуктов реакции, оставляя пассивный слой. В любых условиях растворение идет через пассивную пленку.
Изучение травления в растворах FeC12 показало, что химическое растворение меди протекает наряду с электрохимическим, основными продуктами которых являются CuC1 и Сu2О. Общая скорость ионизации металла определяется пассивированием поверхности меди малорастворимыми продуктами. Пассивирование для железо-хлоридных растворов тем глубже, чем позже оно наступает. Причиной является уплотнение слоя СuС1 в результате уменьшения количества дефектов в структуре, а также тот факт, что по сравнению с CuC12 в железо-хлоридных растворах той же концентрации количество свободных С1- ионов, не входящих в комплексы, больше, и, следовательно, лучше условия для пассивирования. Установлено, что образующийся при травлении меди пассивирующий слой CuС1 обладает полупроводниковыми свойствами и оказывает существенное влияние на протекание анодного растворения металла. При малых концентрациях FeC13 главную роль играет толщина поверхностного слоя, а при высоких концентрациях FeC13 - диффузия ионов Fe3+ в твердую фазу.
Уменьшение экранирования поверхности электрода происходит при интенсивном перемешивании, снижение концентрации Fe3+ - ионов и повышение концентрации С1- -ионов, которые, по-видимому, облегчают растворение осадка CuC1тв, переводя в комплексные соединения типа CuC1 , CuC1
, Cu2C1
.
В средах на основе CuC12 и FeC13 растворение происходит по реакциям:
Cu + CuC12 ® 2CuC1 (13)
Cu + FeC13 ® CuC1 + FeC12 (14),
протекающим по электрохимическому механизму, т.е., например, как совокупность реакций:
Сu + C1- ®CuC1 + e (15)
CuC12 + ®C1- + CuC1 (16)
Первично образующаяся пленка СuС1, наблюдаемая визуально на поверхности меди, при ее травлении растворяется с образованием комплексных ионов CuC1 , CuC1
, которые в свою очередь могут окисляться кислородом воздуха до меди (II).
Электрохимическое поведение меди комплексов Сu (I) в расплаве эквимолярной смеси NaF-KC1 [9]. Установлено, что процесс разряда комплексов Сu (I) до металла протекает обратимо. Определены коэффициенты диффузии Сu (I) и условные стандартные потенциалы j Сu+ /Cu и j Сu2+/Cu+. Показано, что при наличии большого избытка анионов фтора к меди (I) в расплаве происходит стабилизация двухвалентного состояния меди, а разряд комплексов Cu (II) протекает в одну двухэлектронную реакцию. В отсутствие же большого избытка F - образующиеся хлоридно-фторидные комплексы восстанавливаются через две одноэлектронные стадии.
При изучении электролиза растворов трехводного нитрата меди Сu(NO3)2.3H2O в диметилсульфоксиде (ДМСО) с медными анодами [10] было обращено внимание на чрезвычайно высокий анодный выход по току в расчете на ионы меди (II). Влияние плотности тока (Х1) и температуры (Х2) на анодный выход по току (ВТА) изучали методом планирования эксперимента (Бокса-Уильсона). Концентрацию соли в растворе 0,1М сохраняли постоянной. В качестве основного уровня были приняты плотность тока 6 мА/см2 и температура 55 0С.
На основании проведенных экспериментов получено параметрическое уравнение (17). Отметим прежде всего высокое значение первого коэффициента уравнения регрессии: