159663 (737734), страница 2

Файл №737734 159663 (Сложные суждения) 2 страница159663 (737734) страница 22016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Парадоксы материальной импликации

Так обозначается смысловое расхождение операции материальной импликации с ее символической формулой: А→В. Согласно материальной импликации истинность А, для истинности формулы А→В, необходимо, чтобы и В было истинно. В этом случае речь идет о содержательном понимании ложности и истинности высказывания. Однако формула А→В истинна не только в указанном случае, но и тогда, когда А – ложно, а В – истинно и тогда, когда они оба ложны. Из данного факта вытекает парадокс материальной импликации: из ложного высказывания следует любое высказывание, все что угодно и истинное высказывание следует из любого высказывания.

Суждения эквивалентности

Эквивалентность – сложное суждение, которое принимает логическое значение истины тогда и только тогда, когда входящие в него суждения обладают одинаковым логически значением, т. е. одновременно либо истинны, либо ложны.

Логический союз эквивалентности выражается грамматическими союзами «тогда и только тогда, когда», «если и только если». Например, «Если и только если треугольник равносторонний, то он и равноугольный».

Символически эквивалентность записывается АВили АВ («если и только если А, то В»).

Логическое значение эквивалентности соответствует таблице истинности:

А

В

АВ

И

И

И

И

Л

Л

Л

И

Л

Л

Л

И

Эквивалентное суждение со связанными по содержанию членами выражает одновременно условие достаточное и необходимое: (А→ В)˄(В→ А).

Равносильность выражений (АВ) и (А→ В)˄(В→А) может быть доказана с помощью таблицы истинности.

Отрицание

Отрицание – это логическая операция, с помощью которой из одного высказывания получают новое, при этом простое суждение Pпревращается в сложное, и если исходное простое суждение истинно, то новое сложное суждение ложно – «неверно, что P» или «высказывание А ложно тогда, когда высказывание А¯ истинно»

А

А¯

И

Л

Л

И

Двойное отрицание – это операция по отрицанию отрицательного суждения. Повторное отрицание ведет к утверждению или, иначе, отрицание отрицания равносильно утверждению: А→ А˭– «если А, то неверно, что не-А», или А˭А – «неверно, что не-А, если и только если верно, что А».

А

А¯

И

И

Л

Л

Выражение одних логических связок посредством других

Рассмотренные выше логические союзы взаимозаменяемы и выразимы через другие. Например:

А→ В= А˅В – импликация через дизъюнкцию

А→ В = В→ А – импликация через импликацию

А→ q= А˄ В – импликация через конъюнкцию

А˄В= А˅ В – конъюнкция через дизъюнкцию

А˅В= А˄ В – дизъюнкция через конъюнкцию

А˄В= А˅ В – конъюнкция через дизъюнкцию

Таблицы истинности

Таблица истинности – это таблица, устанавливающая соответствие между всеми возможными наборами логических переменных, входящих в логическую функцию, и значениями функции.

А

В

А¯

В¯

А˄В

А˅В

А→В

АВ

И

И

Л

Л

И

И

И

И

И

Л

Л

И

Л

И

Л

Л

Л

И

И

Л

Л

И

И

Л

Л

Л

И

И

И

Л

И

И

Таблицы истинности находят широкое применение для

  • Вычисления истинности сложных высказываний;

  • Установления эквивалентности высказываний;

  • Определения тавтологий.

Равносильные формулы логики высказывания – это выказывания, которые принимают одинаковое значение истинности при одних и тех же значениях элементарных высказываний, входящих в эти формы. Например, А→В, В¯→А¯

Тождественно-истинная формула (тавтология) – это формула, которая принимает значения истины при всех значениях, входящих в нее элементарных высказываний

Тождественно-ложная формула (противоречие) – формула, которая при всех значениях, входящих в нее элементарных высказываний, принимает значение лжи.

Пример:

(А¯˅ В)→(А˄В)

А

А¯

В

А¯˅ В

А˄В

(А¯˅ В)→(А˄В)

И

Л

И

И

И

И

И

Л

Л

Л

Л

И

Л

И

И

И

Л

Л

Л

И

Л

И

Л

Л

Список использованной литературы

  1. М.Д. Купарашвили, А.В. Нехаев, В.И. Разумов, Н.А. Черняк «Логика. Учебное пособие», Омск, 2005.

  2. Гладкий А.В. «Введение в современную логику», МЦМНО, 2001.

  3. Челпанов Г.И. «Учебник логики», Москва, 1897.

Характеристики

Тип файла
Документ
Размер
261,45 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6977
Авторов
на СтудИзбе
262
Средний доход
с одного платного файла
Обучение Подробнее