159583 (737681), страница 2
Текст из файла (страница 2)
3) только одно из двух - сильная, или строгая, дизъюнктивная связь;
4) одно является достаточным условием для другого (если есть первое, то обязательно есть второе) - импликативная, или условная связь;
5) одно является необходимым и достаточным условием для другого (если есть первое, то есть второе, и если нет первого, то нет второго) - эквивалентная связь.
Тип связи выявляется при анализе предложения, которым выражено сложное суждение. Например, суждение “Исторический, юридический и филологический факультеты МГУ размещаются в первом гуманитарном корпусе” содержит утверждение о трех факультетах, а точнее, три утверждения: “Исторический факультет МГУ размещается в первом гуманитарном корпусе”, “Юридический факультет МГУ размещается в первом гуманитарном корпусе”, “Филологический факультет МГУ размещается в первом гуманитарном корпусе” - и при этом предполагает их одновременную истинность. Таким образом, это сложное суждение состоит из трех простых, конъюнктивно связанных суждений. Его логическая форма, записанная на языке логики высказываний, имеет вид: ((p & q) & r).
Истинностные значения сложных суждений определяют путем построения истинностных таблиц. Для этого нужно задать точный смысл логических связок их так называемыми табличными определениями.
Пусть нужно определить, при каких истинностных значениях простых суждений будет истинным суждение формы: ((¬p &q) (r v p)). Чтобы построить таблицу истинности, нужно сначала, считая, что все три простые суждения (обозначенные буквами p, q и r) независимы друг от друга, перебрать все возможные сочетания их значений. Таких сочетаний будет 23 , а в общем случае – 2, где - число различных простых суждений. Итак, для нашего случая в трех первых левых столбцах таблицы восемью строками записывают все сочетания значений пропозициональных переменных (простых суждений). Механический перебор всех сочетаний осуществляется, если для первой пропозициональной переменной записать половину числа всех строк (четыре строки) “и”, а вторую половину - “л”, для второй чередовать “и” и “л” через две строки, а для последней - через одну.
После задания значений пропозициональных переменных, т.е. заполнения так называемых входных столбцов таблицы, определяют истинностные значения всей формулы, начиная с самых мелких подформул, руководствуясь скобками, а именно подформул:
(1) ¬p; (2) (¬p & q); (3) (r v p).
Заключительным шагом будет нахождение значения всей формулы ((¬p &q) (r v p)). Таким образом, в таблице, кроме входных столбцов, появляются еще 4 столбца, где последний называется результирующим, т.е. дающим ответ на вопрос, при каких условиях истинно сложное суждение данной формы.
Таблица истинности
р | q | r | ¬p | (¬p & q) | (r v p) | ((¬p &q) (r v p)) |
и | и | и | л | л | и | и |
и | и | л | л | л | и | и |
и | л | и | л | л | и | и |
и | л | л | л | л | и | и |
л | и | и | и | и | и | и |
л | и | л | и | и | л | л |
л | л | и | и | л | и | и |
л | л | л | и | л | л | и |
Как видим, формула принимает значение “истина” при всех наборах значений пропозициональных переменных, кроме случая, когда р - ложно, q - истинно, r - ложно (шестая строка). Это значит, что все сложные суждения такой формы истинны, кроме таких суждений, в которых первое и третье простые суждения ложны, а второе суждение истинно.
Суждение, логическая форма которого принимает значение “истина” при всех наборах значений пропозициональных переменных (при всех вариантах истинностных значений составляющих его простых суждений), называется логически необходимым. При этом его форма выражается формулой, называемой тождественно истинной. Проще говоря, тождественно истинной называется формула, результирующий столбец таблицы которой состоит только из “и”.
Суждение, логическая форма которого принимает значение “ложь“ при всех наборах значений пропозициональных переменных (при всех вариантах истинностных значений составляющих его простых суждений), называется логически невозможным, а его логическая форма выражается формулой, называемой тождественно ложной. Тождественно ложна формула, результирующий столбец таблицы которой состоит только из “л”.
Суждение, логическая форма которого в результирующем столбце принимает значения как “истина”, так и “ложь “, называется логически случайным. Его логическая форма выражается формулой, называемой собственно выполнимой. Формула называется выполнимой, если она тождественно истинна или собственно выполнима, и она называется невыполнимой, если является тождественно ложной.
5. Отношения между суждениями
Отношения устанавливают, обычно, между суждениями, имеющими хотя бы частично одинаковое содержание: между сложными - в том случае, если в их составе имеется хотя бы одно общее простое суждение, а между простыми - только если в качестве их субъектов и предикатов выступают одни и те же понятия с точностью до отрицания. Например, “Все люди - смертные существа” и “Ни одно бессмертное существо не является человеком”. Здесь субъектами и предикатами являются понятия “человек” и “смертное (бессмертное) существо”. Сравниваемые суждения, прежде всего, могут или не могут быть вместе истинными, могут или не могут быть вместе ложными, истинность одного может обусловливать истинность другого. Поэтому в качестве базисных отношений выделяют совместимость по истинности, совместимость по ложности и логическое следование.
Если суждения могут быть одновременно истинными, они называются совместимыми по истинности, а в противном случае они не совместимы по истинности. Аналогично, если суждения могут быть одновременно ложными, они называются совместимыми по ложности.
Ëèòåðàòóðà
1. Гетманова А.Д. Логика: Учебник для юристов. – М.: Омега-Л, 2003.
2. Грядовой Д.И. Логика: Структурированный учебник. – М.: Юнити, 2003.
3. Ивлев Ю.В. Логика. – М.: Логос, 2001.
4. Войшвилло Е.К. Логика. – М.: Профобразование, 2000.
5. Ивин А.А. Логика. – М.: Гардарики, 2003.
6. Ивин А.А. Практическая логика. – М.: Просвящение, 1996.
7. Малахов В.П. Формальная логика: Учебник. – М.: Академический проспект, 2001.