159488 (737626), страница 2

Файл №737626 159488 (Объективность науки и человеческая субъективность, или в чём состоит человеческое измерение науки) 2 страница159488 (737626) страница 22016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Развитием принципа сохранения энергии стал другой интересный принцип – принцип невозможности вечного двигателя. Важен не столько принцип, являющийся, по сути, всего лишь одной из трактовок принципа сохранения, сколько его формулировка – невозможен ДВИГАТЕЛЬ, то есть некий полезный человеку продукт. Это ещё одно подтверждение человеческого участия (точнее участия человеческих интересов) в формировании механики. Само обращение к вопросу вечного двигателя есть пример обоснования уже обоснованного закона, но уже не на безличном языке формул, а на примере терминов «мира человека». Показательно, что уже в рамках механистического мировоззрения возникали прямые отсылки к стереотипам человеческого мышления.

Максвелл, уже после формирования своей теории электрических и газовых взаимодействий на основании обобщённых уравнений Лагранжа (которые вообще пренебрегали сутью механизма процесса, который описывали), всеми силами пытался получить привычную, механистическую интерпретацию действия электромагнитного поля. В.А. Фок в середине XX века объяснял это так: «…вековое развитие физики, включая XIX век, привело к тому, что абсолютный характер физических процессов, возможность их неограниченной детализации и их однозначная детерминированность стали считаться основанием физической науки…». [6]

Для Максвелла значимо различие интерпретаций, понимаемое как различие наглядных моделей. Для Фока – математическое различие получаемых решений. Это расхождение во взглядах наиболее точно отражает расхождения во взглядах на науку в середине XIX века и век спустя. Несмотря на все попытки укрепить и модифицировать наглядный механистический подход, предпринятые в т.ч. и Герцем, известным экспериментатором, использовавшим математику «лишь как способ понять лабораторные исследования», наука к концу XIX века постепенно ушла от наглядности, приняв сухую математическую парадигму. Однако такой поворот устраивал не всех.

В 1899г. Л.Больцман в одном из докладов прямо говорит о возможности наличия нескольких, отличных, но при этом равнозначно истинных теорий, выражая возможность физического плюрализма. Утверждение истинности лишь одной теории, по его словам, выражает лишь наше субъективное убеждение. Позже, в 1929г., Ф.Клейн открыто укажет на негативные последствия «подчинения формальному методу классической механики всё более новых и далёких областей применения». Таким образом, Максвелл, пытаясь найти «классические» объяснения к своей «чисто математической» теории, хоть и поступает наоборот, относительно действий Больцмана и Клейна, но фактически закладывает первый камень в структуру физического плюрализма.

Больцмана можно назвать основателем квантовой механики. В своих работах он постоянно подчёркивает, что «мы не должны думать, что всё на свете может быть подразделено соответственно нашим категориям и что может существовать наиболее совершенная классификация». Саму закономерность Больцман трактует как специфику человеческого восприятия природы, искусственные рамки познания. В отличие от предшественников, он рассматривает не только происхождение явлений или объектов мира природы, но и происхождение, генезис, понятий.

Механическая картина мира была основополагающей до самого конца XIX века, лишь десятилетие спустя, с появлением специальной теории относительности, сдав позиции новой, плюралистической картине. Человек, как создатель и реформатор этих картин мира, возникает как на первых этапах модификации, когда объясняет принцип сохранения энергии на примере невозможности создания вечного двигателя, так и в поисках Максвелла и Больцмана. Причём человеческий компонент сказывается уже не на факте наличия множественности теорий и картин мира, а на критериях отбора из них. И хотя математизация механики уменьшала степень её человекоразмерности, формализация методов решения и описания, апелляции к человеческим компонентам (законам человеческого мышления, здравого смысла, целесообразности и т.д.) возвращали всё на круги своя. В конце концов, роль парадигмальной науки от механики перешла к физике.

3. Физика как парадигмальная наука XX века и человекоразмерность.



3.1. Человекоразмерность и редукционизм.



Идеальная парадигмальная наука подразумевает сохранение неизменным в своей основе идеала классической науки, а он, в свою очередь, подразумевает проблему редукционизма. Самым ярким примером попыток решения этой проблемы в истории науки являются попытки редуцировать к физике химию.

К концу XIX века химическая молекула моделировалась системой атомов, связанных между собой дискретными и насыщаемыми силами химического сродства. Это понятие, прежде всего, являлось рудиментами алхимического мышления. В отличие от физики, химия в то время была больше философской, логической наукой и была крайне слабо математизирована. Лишь в 1860 году химики голосованием договорились о конечном виде химической формулы, в то время как физика (тогда ещё механика) крепко держала позиции и имела развитый и структурированный мат. аппарат. Однако химические взаимодействия зависят не только от количества, но и от природы вещества. Причём вещества – как минимум две молекулы, в отличие от физики, способной изучать одну материальную точку [7]. Взаимовлияние физических и химических теорий было всегда значительно: если Дж.Дальтон сформулировал в начале XIX века теорию вступления вещества в реакцию в определённых пропорциях на основании физических, атомистических идей, то полвека спустя Г.Гельмгольц обосновал существование единицы электрического заряда по аналогии с существованием химических атомов. Вплоть до 1905 года (год выхода в свет работы А.Эйнштейна) не было теоретического обоснования молекулярно-кинетической теории. Вопрос оставался открытым и его решение искали в физике.

Первой явной попыткой математизации химии было введение Крум-Брауном теорий графов и операндов при решении химических задач. Причём математика применялась не для решения, как такового, а лишь для получения иной, более удобной для дальнейших действий формы записи. Эту теорию позже развил А.Кэли, введя новый тип графов – корневое дерево. Каждому химическому атому в соединении сопоставлялась вершина графа, а структурному штриху (вектору валентности) – его ребро. Кэли ставил задачей расшифровку загадочных химических формул при помощи математических аналогий. Напротив, алгебраист Дж.Сильвестр пытался использовать известные сведения о валентности и устойчивости химических соединений для прояснения природы инвариантов (введённое им понятие). Атому валентностью n ставится в соответствие бинарная форма порядка n. Устанавливается химико-математическая аналогия, причём конструируется частный способ задания этой аналогии. Эта обратимость целей – или математика для прояснения особенностей химических соединений, или химия для прояснения свойств математических – свидетельствует об одинаковой неразвитости этих теорий, об их безсубстанциональности и формальности. Химическое соединение по-прежнему всего лишь абстрактный объект с набором формальных свойств…

Смысл валентной формулы стал понятен лишь с открытием электрона в 1897г. Развитие квантовой физики повлекло за собой формирование квантовой химии (пусть и с опозданием, обусловленным низким уровнем математической подготовки химиков рубежа веков). Квантовая химия, использовавшая методы квантовой механики для решения химических задач, должна была помочь выстроить понятийную схему на основе физико-математических теоретических построений и способствовать отказу от чисто формальных соотношений между объектами химии и математики или физики. От физически не сформулированных представлений о природе химических связей прейти к формулировке оных как некоего функционала, строящегося на точном решении задач квантовой механики. Однако, для точного решения задач внутри химии, представляется единственно возможный путь – формулировать их на языке физики, допускающей точные числовые решения. Но за столетия своего развития язык химии оказался столь развит и самодостаточен, что в процессе решения задач химии именно химический язык оказался необходим. Кроме того, при использовании независимых расчётных методов квантовой механики обнаружилось, что при максимально точном и общем гамильтониане исходной системы, в полученном максимально точном численном решении химические эффекты не проявлялись. Их приходилось как бы вводить дополнительно, что рушило всю стройность теоретического дедуктивного расчёта. Складывалась ситуация, когда доказавшая свою обоснованность теория как теория физическая оказывалась малопригодной в области химии, хотя там фигурировали те же самые объекты.

И хотя алгоритмические проблемы редукции химии к физике очевидны, попытки её проведения продолжаются до сих пор. И дело тут, скорее, в статусе физики как «науки о природе и её законах». Редукция к физике являлась бы свидетельством некоего единства естественнонаучного подхода, свидетельством единства науки, выраженном в её понятиях. Таким образом, подгонка требований описания на языке физическо-математических понятий к требованиям соответствия химическим понятиям и необходимость получения описаний в химических терминах может истолковываться как попытка создать химию как естественнонаучную теоретическую дисциплину, отвечающую требуемым критериям строгости. Необходимость получения наглядных образов и решений не включается в набор этих требований, однако обращение к ним диктуется желанием построить нормальную систему объяснений. Произвол в выборе языка или метода описания всегда остаётся, определяясь в зависимости от поставленной задачи. Сама точность теории определяется каждый раз задачей, поставленной исследователем. Отсюда в конструирование науки и входит задаваемое человеком и явно фиксируемое целеполагание. Стремления иерархизировать или, напротив, сделать однородными, гомогонизировать объекты оперирования не есть отражения реальности как таковой, а есть всего лишь отражения человеческого манипулирования с нею.



3.2. Человекоразмерность и критерий открытия.



Любая научная работа должна содержать открытие. Но что есть открытие? И как выбрать научную стратегию, приводящую к совершению открытия? Есть один общий критерий: научная работа рассматривается как открытие только если она может быть использована. Причём совершенно не важно, превращается ли данное новое в науке, обозначенное как открытие, в истинно работающий инструмент или же надежды на его использование просто представляются реальными. То есть распознавание нового в науке можно осуществлять, рассматривая продолжающуюся после открытия научную деятельность. Если раньше некие задачи и цели были недостижимы, а теперь, благодаря новому, они достигнуты, то это новое начинает рассматриваться как открытие. Например, долгое время задача преобразования энергий была нерешённой, но с открытием принципа сохранения стало возможным выстроить в стройный ряд экспериментальные данные термодинамики и электродинамики. Но сам принцип есть некое законченное, замкнутое на самом себе высказывание, ведь самого преобразования энергий (несмотря на экспериментальное подтверждение) никто не видел. Невозможность создания вечного двигателя кажется более обоснованной, т.к. вечных движений, которые он должен совершать, никто и никогда в природе не фиксировал. Квантовая теория Бора может быть рассмотрена с той же позиции, поскольку она была использована как инструмент объяснения свойства периодичности в первых рядах таблицы Менделеева (не смотря на то, что сама теория была построена как раз на эффекте этой самой периодичности).

Явным примером стратегии, ведущей к открытию, может служить всё та же теория Бора, где отсутствие излучения у устойчивого атома принимается за исходную точку, хотя это противоречило тогдашним положениям электромагнитной теории. Теоретическая аномалия превращается в новый закон природы.

Часто просто перенос методов одной науки в другую трактуется как открытие. Наиболее типичный случай – перенос математических методов в физику. Менее известен факт, что именно благодаря доведённой веками до совершенства технологии производства кафеля и фарфора стало возможным создание интегральных микросхем, ведь выращивание кристалла в керамической подложке технологически невероятно сходно с нанесением рисунка на фарфор металлосодержащими красками.



3.3. Понятие противоречия и его объективные и субъективные коннотации.



Можно констатировать, что именно аналогия и перенос методов одной дисциплины в другую, и инверсия, рассматриваемая как перемена точки зрения на противоположную, могут рассматриваться как два пути, наиболее часто ведущих к открытию. Однако инверсия порождает противоречие с уже установленными законами и правилами внутри научной теории. Как сказал в 1946г. А.Эйнштейн: «Мы должны признать, что не имеем для физики общей теоретической основы, которую можно считать её логическим фундаментом».

Характеристики

Тип файла
Документ
Размер
276,71 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее