159480 (737620), страница 3

Файл №737620 159480 (Парадоксы логики) 3 страница159480 (737620) страница 32016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

И тут мы заметим, что заданный вопрос, «Кто бреет брадобрея?», был некорректен с самого начала так же, как классический вопрос: «Зачем ты бьешь своего отца?» Прежде, чем спрашивать, кто бреет брадобрея, надо получить согласие, что его кто-то бреет.

Рассуждение о парикмахере может быть названо псевдопарадоксом. По своему ходу оно строго аналогично парадоксу Рассела и этим интересно. Но оно все-таки не является подлинным парадоксом.

Другой пример такого же псевдопарадокса представляет собой известное рассуждение о каталоге.

Некая библиотека решила составить библиографический каталог, в который входили бы все те и только те библиографические каталоги, которые не содержат ссылки на самих себя. Должен ли такой каталог включать ссылку на себя? Нетрудно показать, что идея создания такого каталога неосуществима; он просто не может существовать, поскольку должен одновременно и включать ссылку на себя и не включать. Интересно отметить, что составление каталога всех каталогов, не содержащих ссылки на самих себя, можно представить как бесконечный, никогда не завершающийся процесс.

Допустим, что в какой-то момент был составлен каталог, скажем К1 включающий все отличные от него каталоги, не содержащие ссылки на себя. С созданием K1 появился еще один каталог, не содержащий ссылки на себя. Так как задача заключается в том, чтобы составить полный каталог всех каталогов, не упоминающих себя, то очевидно, что K1 не является ее решением. Он не упоминает один из таких каталогов – самого себя. Включив в K1 это упоминание о нем самом, получим каталог К2. В нем упоминается К1 но не сам К2. Добавив к К2 такое упоминание, получим К3, который опять-таки неполон из-за того, что не упоминает самого себя. И так далее без конца.

5. Казнь врасплох

Неизвестно, кому первому пришла в голову идея парадокса. Согласно У.В. Куайну, логику из Гарвардского университета, автору одной из упоминавшихся выше статей, впервые об этом парадоксе заговорили в начале сороковых годов нашего века, нередко формулируя его в виде головоломки о человеке, приговоренном к смертной казни через повешение. Осужденного бросили в тюрьму в субботу. – Тебя повесят в полдень, – сказал ему судья, – в один из семи дней на следующей неделе. Но в какой именно день это должно произойти, ты узнаешь лишь утром в день казни. Судья славился тем, что всегда держал свое слово. Осужденный вернулся в камеру в сопровождении адвоката. Как только их оставили вдвоем, защитник удовлетворенно ухмыльнулся.

– Неужели не понятно? – воскликнул он. – Ведь приговор судьи нельзя привести в исполнение!

– Как? Ничего не понимаю, – пробормотал узник.

– Сейчас объясню. Очевидно, что в следующую субботу тебя не могут повесить: суббота – последний день недели, и в пятницу днем ты бы уже знал наверняка, что тебя повесят в субботу. Таким образом, о дне казни тебе бы стало известно до официального уведомления в субботу утром, следовательно, приказ судьи был бы нарушен.

– Верно, – согласился заключенный.

– Итак, суббота, безусловно, отпадает, – продолжал адвокат, – поэтому пятница остается последним днем, когда тебя могут повесить. Однако и в пятницу повесить тебя нельзя, ибо после четверга осталось бы всего два дня – пятница и суббота. Поскольку суббота не может быть днем казни, повесить тебя должны лишь в пятницу. Но раз тебе об этом станет известно еще в четверг, то приказ судьи опять будет нарушен. Следовательно, пятница тоже отпадает. Итак, последний день, когда тебя еще могли бы казнить, это четверг. Однако четверг тоже не годится, потому что, оставшись в среду живым, ты сразу поймешь, что казнь должна состояться в четверг.

– Все понятно! – воскликнул заключенный, воспрянув духом. – Точно так же я могу исключить среду, вторник и понедельник. Остается только завтрашний день. Но завтра меня наверняка не повесят, потому, что я знаю об этом уже сегодня!

Короче говоря, приговор внутренне противоречив. С одной стороны, в двух утверждениях, из которых он состоят, нет ничего логически противоречивого, а с другой – привести его в исполнение, оказывается, невозможно.

Безупречными логическими рассуждениями осужденного, казалось бы, убедили в том, что, не нарушив приговора, казнь совершить невозможно. И вдруг, к немалому удивлению осужденного, в четверг утром в камеру является палач. Осужденный, конечно, этого не ждал, но самое удивительное, что приговор оказался совершенно точным – его можно привести в исполнение в полном соответствии с формулировкой. «Мне кажется, – пишет Скривен, – что именно грубое вторжение внешнего мира, разрушающее тонкие логические построения, придает парадоксу особую пикантность. Логик с трогательным постоянством произносит заклинания, которые в прошлом приводили к нужному результату, но чудовище-реальность на этот раз отказывается повиноваться и продолжает следовать своим путем».

Проследим еще раз решение парадокса, придав ему на этот раз форму парадокса о человеке, приговоренном к повешению. Теперь мы знаем, что судья сформулировал приговор правильно, а узник рассуждал неверно. Ошибочным являлся самый первый шаг в его рассуждении, когда он полагал, будто его не могут повесить в последний день недели. На самом же деле у осужденного нет оснований делать какие бы то ни было заключения о своей судьбе даже в вечер накануне казни (ситуация здесь та же, что и в парадоксе с яйцом, когда остается закрытой одна последняя коробка). Эта мысль играет решающую роль в работе известного логика Куайна, написанной им в 1953 году.

Куайн сообщает, как бы он рассуждал на месте узника. Следует различать четыре случая: первый – меня повесят завтра днем, и я знаю об этом уже сейчас (но на самом деле я этого не знаю); второй – меня не повесят завтра днем, и я знаю об этом уже сейчас (но на самом деле я этого не знаю); третий – меня не повесят завтра днем, но сейчас я об этом не знаю и, наконец, четвертый – меня повесят завтра днем, но сейчас я об этом не знаю.

Два последних случая являются возможными, последний из них означал бы приведение приговора в исполнение. В такой ситуации незачем загадывать вперед и ловить судью на противоречиях. Остается лишь ждать, надеясь на лучшее.

Шотландский математик Томас Г. О'Бейрн в статье с несколько парадоксальным названием «Может ли неожиданное никогда не произойти?» (The New Scientist, May 25, 1961.) дает великолепный анализ обсуждаемого парадокса. Как показывает О'Бейрн, ключ к решению парадокса лежит в осознании одного довольно простого обстоятельства: один человек располагает сведениями, которые позволяют ему считать правильным предсказание какого-то события в будущем, другой ничего не может сказать о правильности предсказания до тех пор, пока это событие не произойдет.

То же самое можно сказать о нашем парадоксе, И судья, и человек, кладущий яйцо в одну из коробок, и наш приятель с тринадцатью картами – каждый из них знает, что его предсказание должно исполниться. Однако их слова с предсказанием не могут служить основанием для цепочки рассуждении, приводящей, в конечном счете, к опровержению самого предсказания. Именно здесь кроется то бесконечное блуждание по кругу, которое, подобно фразе на лицевой стороне карточки из парадокса Журдена, обрекает на неудачу все попытки доказать ошибочность предсказания.

Суть нашего парадокса станет особенно ясной, если воспользоваться одной идеей, высказанной в статье Скривена. Предположим, что муж говорит своей жене:

Я сделаю тебе ко дню рождения сюрприз. Ты ни за что не догадаешься, какой подарок тебя ожидает. Это тот самый золотой браслет, который ты видела на прошлой неделе в витрине ювелирного магазина».

Что же теперь делать его несчастной жене? С одной стороны, она знает, что муж никогда не лжет и всегда выполняет свои обещания. Однако если он все же подарит ей золотой браслет, то это уже не будет сюрпризом и тогда обещание окажется невыполненным, то есть муж сказал ей неправду. А если это так, то к каким выводам может она прийти, рассуждая логически? Не исключено, что муж сдержит слово и подарит ей браслет, нарушив обещание удивить ее неожиданным подарком. С другой стороны, он может сдержать свое слово, что подарок будет неожиданным, но нарушить второе обещание и вместо золотого браслета подарит ей, например, новый пылесос. Поскольку муж своим утверждением сам себе противоречит, у нее нет никаких разумных оснований предпочесть одну из этих возможностей другой, следовательно, у нее нет оснований надеяться на золотой браслет. Нетрудно догадаться, что будет дальше: когда. в день рождения муж преподнесет ей браслет, подарок мужа окажется для нее приятным сюрпризом, поскольку его нельзя предсказать заранее никакими логическими рассуждениями. Муж все время знал, что может сдержать слово и сдержит его. Жена же этого не знала до тех пор, пока обещанное событие не произошло. Утверждение мужа, которое еще вчера казалось ей чепухой и ввергло ее в запутаннейший клубок логических противоречий, сегодня вдруг стало абсолютно правильным и непротиворечивым благодаря появлению долгожданного золотого браслета.

6. Другие парадоксы

Приведенные парадоксы – это рассуждения, итог которых – противоречие. Но в логике есть и другие типы парадоксов. Они также указывают на какие-то затруднения и проблемы, но делают это в менее резкой и бескомпромиссной форме. Таковы, в частности, парадоксы, рассматриваемые далее.

Парадоксы неточных понятий

Большинство понятий не только естественного языка, но и языка науки являются неточными, или, как их еще называют, размытыми. Нередко это оказывается причиной непонимания, споров, а то и просто ведет к тупиковым ситуациям.

Если понятие неточное, граница области объектов, к которым оно приложимо, лишена резкости, размыта. Возьмем, к примеру, понятие «куча». Одно зерно (песчинка, камень и т.п.) – это еще не куча. Тысяча зерен – это уже, очевидно, куча. А три зерна? А десять? С прибавлением, какого по счету зерна образуется куча? Не очень ясно. Точно так же, как не ясно, с изъятием какого зерна куча исчезает. Неточными являются эмпирические характеристики «большой», «тяжелый», «узкий» и т.д. Неточны такие обычные понятия, как «мудрец», «лошадь», «дом» и т.п. Будет ли куча песка, из которой мы взяли одну песчинку считаться кучей? Да, будет. А если взять ещё одну песчинку? Будет. Так как при последовательном изъятии песчинок куча не перестаёт быть кучей, то и одна песчинка должна считаться кучей. Вывод явно парадоксальный и обескураживающий.

Нетрудно заметить, что рассуждение о невозможности образования кучи проводится с помощью хорошо известного метода математической индукции. Одно зерно не образует кучи. Если n зерен не образуют кучи, то n+1 зерно не образуют кучи. Следовательно, никакое число зерен не может образовать кучи.

Возможность этого и подобных ему доказательств, приводящих к нелепым заключениям, означает, что принцип математической индукции имеет ограниченную область приложения. Он не должен применяться в рассуждениях с неточными, расплывчатыми понятиями.

Хорошим примером того, что эти понятия способны приводить к неразрешимым спорам, может служить любопытный судебный процесс, состоявшийся в 1927 г. в США. Скульптор К. Бранкузи обратился в суд с требованием признать свои работы произведениями искусства. В числе работ, отправляемых в Нью-Йорк на выставку, была и скульптура «Птица», которая сейчас считается классикой абстрактного стиля. Она представляет собой модулированную колонну из полированной бронзы около полутора метров высоты, не имеющую никакого внешнего сходства с птицей. Таможенники категорически отказались признать абстрактные творения Бранкузи художественными произведениями. Они провели их по графе «Металлическая больничная утварь и предметы домашнего обихода» и наложили на них большую таможенную пошлину. Возмущенный Бранкузи подал в суд. Таможню поддержали художники – члены Национальной академии, отстаивавшие традиционные приемы в искусстве. Они выступали на процессе свидетелями защиты и категорически настаивали на том, что попытка выдать «Птицу» за произведение искусства – просто жульничество.

Этот конфликт рельефно подчеркивает трудность оперирования понятием «произведение искусства». Скульптура по традиции считается видом изобразительного искусства. Но степень подобия скульптурного изображения оригиналу может варьироваться в очень широких пределах. И в какой момент скульптурное изображение, все более удаляющееся от оригинала, перестает быть произведением искусства и становится «металлической утварью»? На этот вопрос так же трудно ответить, как на вопрос о том, где проходит граница между домом и его развалинами, между лошадью с хвостом и лошадью без хвоста и т.п. К слову сказать, модернисты вообще убеждены, что скульптура – это объект выразительной формы и она вовсе не обязана быть изображением.

Обращение с неточными понятиями требует, таким образом, известной осторожности. Не лучше ли тогда вообще отказаться от них? Немецкий философ Э. Гуссерль был склонен требовать от знания такой крайней строгости и точности, какая не встречается даже в математике. Биографы Гуссерля с иронией вспоминают в связи с этим случай, произошедший с ним в детстве. Ему был подарен перочинный ножик, и, решив сделать лезвие предельно острым, он точил его до тех пор, пока от лезвия ничего не осталось.

Более точные понятия во многих ситуациях предпочтительнее неточных. Вполне оправдано обычное стремление к уточнению используемых понятий. Но оно должно, конечно, иметь свои пределы. Даже в языке науки значительная часть понятий неточна. И это связано не с субъективными и случайными ошибками отдельных ученых, а с самой природой научного познания. В естественном языке неточных понятий подавляющее большинство; это говорит, помимо всего прочего, о его гибкости и скрытой силе. Тот, кто требует от всех понятий предельной точности, рискует вообще остаться без языка. «Лишите слова всякой двусмысленности, всякой неопределенности, – писал французский эстетик Ж. Жубер, – превратите их… в однозначные цифры – из речи уйдет игра, а вместе с нею – красноречие и поэзия: все, что есть подвижного и изменчивого в привязанностях души, не сможет найти своего выражения. Но что я говорю: лишите… Скажу больше. Лишите слова всякой неточности – и вы лишитесь даже аксиом».

Долгое время и логики, и математики не обращали внимания на трудности, связанные с размытыми понятиями и соответствующими им множествами. Вопрос ставился так: понятия должны быть точными, а все расплывчатое недостойно серьезного интереса. В последние десятилетия эта чрезмерно строгая установка потеряла, однако, привлекательность. Построены логические теории, специально учитывающие своеобразие рассуждений с неточными понятиями.

Характеристики

Тип файла
Документ
Размер
313,89 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7031
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее