159479 (737619), страница 2

Файл №737619 159479 (Парадоксы в науке) 2 страница159479 (737619) страница 22016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

1. В одном из своих диалогов Платон описывает, как два древних софиста запутывают простодушного человека по имени Ктесипп.

- Скажи-ка, если у тебя собака?

- И очень злая, - отвечает Ктесипп.

- А есть ли у неё щенята?

- Да, тоже злые.

- А их отец, конечно, собака же?

- Я даже видел, как он занимается с самкой.

- И этот отец тоже твой?

- Конечно.

- Значит, ты утверждаешь, что твой отец – собака и ты брат щенят!

Здесь имеется следующая логическая ошибка: заключение не вытекает из принятых посылок. Чтобы убедиться в этом, нужно слегка переформулировать посылки, не меняя их содержания: «Этот пес принадлежит тебе; он является отцом». Из данной информации можно вывести только одно заключение: «Этот пес принадлежит тебе и он является отцом», но никак не «Он твой отец».

2. Обычная для разговорного языка сокращенная форма выражения заводит в тупик в следующем рассуждении.

- Скажи, - обращается софист к молодому любителю споров, -может одна и та же вещь иметь какое-то свойство и не иметь его?

- Очевидно, нет.

- Посмотрим. Мёд сладкий?

- Да.

- И жёлтый тоже?

- Да, мёд сладкий и жёлтый. Но что из этого?

- Значит, мёд сладкий и жёлтый одновременно. Но жёлтый – это сладкий или нет?

- Конечно, нет. Жёлтый – это жёлтый, а не сладкий.

- Значит, жёлтый – это не сладкий?

- Конечно.

- О мёде ты сказал, что он сладкий и жёлтый, а потом согласился, что жёлтый не значит сладкий, и поэтому как бы сказал, что мёд является и сладким, и несладким одновременно. А ведь в начале ты твердо говорил, что не одна вещь не может и обладать и не обладать каким-то свойством.

Конечно, софисту не удалось доказать, что мёд имеет одновременно противоречащие друг другу свойства – сладкий и несладкий. Подобные утверждения несовместимы с логическим законом противоречия, и их вообще не возможно доказать. Видимость убедительности данного утверждения создаётся за счет подмены софистом выражения «Быть желтым не значит быть сладким» выражением «Быть желтым значит не быть сладким». Но это совершенно разные выражения. Верно, что желтое не обязательно является сладким (например, лимон, который желтый и кислый), но неверно, что желтое непременно несладкое. Подмена происходит почти незаметно, когда рассуждение протекает в сокращенной форме. Но стоит развернуть сокращённое «желтый – это несладкий», как эта подмена становиться явной.

3. Софизм «Рогатый» был одним из самых знаменитых в Древней Греции. Сейчас он содержится во многих энциклопедиях в качестве «образцового». С его помощью можно уверить каждого, что он рогат: «Что ты не терял, ты имеешь; рога ты не терял; значит у тебя рога». Здесь обыгрывается двусмысленность выражения «то, что не терял». Иногда оно означает «то, что имел и не потерял», а иногда просто «то, что не потерял, независимо от того, имел или нет». Можно, например, спросит человека: «Не вы потеряли зонтик?», не зная заранее, был у него зонтик или нет. В посылке «Что ты не терял, то имеешь» оборот «то, что ты не терял» должен означать «то, что имел и не потерял», иначе эта посылка окажется ложной. Но во второй посылке это значение уже не проходит: высказывание «Рога – это то, что ты имел и не потерял» является ложным [6, С.372-373].

Подобных софизмов придумали в античности очень много. И, несмотря на то, что их осуждали и критиковали ещё в Древней Греции, их обсуждают и сейчас, и интерес к ним не пропал и в наши дни. Люди до сих пор сочиняют и используют софизмы в своей речи. Примером современного софизма может служить сочиненная английскими студентами песенка:

Чем больше учишься, тем больше знаешь. Чем больше знаешь, тем больше забываешь. А чем больше забываешь, тем меньше знаешь. А чем меньше знаешь, тем меньше забываешь. Но чем меньше забываешь, тем больше знаешь. Так для чего учиться?

А в одном известном анекдоте про Вовочку (где доказывается, что таракан слышит ногами) можно увидеть аналогию с софистическим утверждением, что для зрения глаза не так уж нужны.

Встречаются софизмы и в повседневных разговорах, например, в спорах. Часто один из участников спора, стремящийся добиться победы любой ценой, намеренно использует в своей речи софизмы. А.А. Ивин пишет: «Софизм традиционно считается помехой в обсуждении и в споре. Использование софизмов уводит рассуждение в сторону: вместо выбранной темы приходится говорить о правилах и принципах логики» [5, С.293].

Таким образом, софизмы понимаются лишь как сбивчивое доказательство, как нечестная попытка выдать ложь за правду. Это преднамеренные логические ошибки, тонкий завуалированный обман.

Парадокс, по своей природе близок и паралогизму и особенно софизму. Однако, несмотря на их схожесть, все-таки существуют и различия. Как уже говорилось, парадоксом называется странный, неожиданный результат, глубоко расходящийся с общепринятыми представлениями. Но от паралогизма он отличается тем, что выведен логически корректно, с соблюдением норм и правил логики. Различие между парадоксом и софизмом в то, что парадокс – не преднамеренно полученный противоречивый результат.

Впрочем, нужно заметить, что грань между софизмами и парадоксами не является четко определенной. В случаях многих конкретных рассуждений невозможно решить на основе стандартных определений софизма и парадокса, к какому из этих двух классов следует отнести данные рассуждения. Хорошо известный «Парадокс лжеца» был придуман, как софизм, однако в последствие получил статус парадокса, поскольку его противоречивость говорит о какой-то логической ошибке, но в чем она и как её устранить до сих пор остаётся загадкой.

1.2 Классификации парадоксов

Таким образом, парадокс – это противоречие, а не ошибка, его появление нельзя объяснить желанием сознательно исказить положение дел или незнанием какой-то детальной информации. Он коренится глубже и свидетельствует об объективно сложившемся противоречивом состоянии дел.

Первые парадоксы были известны уже в глубокой древности, существуют и современные парадоксы. Некоторые из этих противоречий удалось решить путём создания новых теорий, переосмысления устоявшихся, но несовершенных законов. Другие – так и остались неразрешенными. Считается, что ученые относятся к парадоксам с неприязнью, их называют «патологиями» науки и стремятся как можно скорее от них избавиться. Однако это не всегда удаётся. В настоящее время не существует науки, в которой бы никогда не возникала парадоксов. Их находили в психологии, лингвистики, физике и даже в таких точных науках как логика и математика.

Сейчас сложно подсчитать, как много существует парадоксов: они многочисленны, разнообразны по своей природе и структуре. Поэтому ученые пытаются их структурировать, объединить в какую-либо систему. Вот примеры некоторых классификаций:

Традиционная классификация, идущая от Рамсея (1926), делит парадоксы на логические и семантические. Это классификация проста и удобна, однако М.М. Новосёлов замечает, что рамсеевская классификация парадоксов не делает различия между чистой и прикладной логикой. Однако, это различие существенно, поскольку в чистой логике нельзя обнаружить что-либо парадоксальное, непротиворечивость этих систем доказана. Только в прикладной логике есть гипотезы и предпосылки, которые придают доказательствам относительный (условный) характер и которые, в случае обнаружения противоречий, приходится исключать. Поскольку в данной классификации подобного различия не проводится, все беды, связанные с парадоксами как бы перекладываются на какой-то таинственный противоречивый характер нашего мышления, что даёт возможность недоброжелателям говорить о кризисе в логике.

М.М. Новосёлов предлагает иную классификацию парадоксов, которая, по его мнению, более детально обращает внимание на особенности допущений (и принципов) весьма общего порядка, способных проявиться в основе того или иного парадокса. Данная классификация разделяет парадоксы на:

1) парадоксы, связанные с математической индукцией (парадокс кучи, космологические парадоксы; парадокс Хао-Вана, связанный с неоднозначностью натурального ряда в аксиоматической теории множеств и формализуемостью доказательств непротиворечивости);

2) парадоксы релевантности (т.е. те, в основе которых лежит допущение о возможности игнорировать подробности смысловых связей); с этими парадоксами связаны и парадоксы математической индукции, так как попытки освободиться от этих парадоксов основаны на математической индукции;

3) парадоксы отождествлений (в основе которых лежит допущение о независимости тождества от отождествлений); они также связаны с парадоксами математической индукции и парадоксами актива-пассива;

4) семантические парадоксы (основанные на допущение об осмысленности отношения обозначения);

5) теоретико-множественные парадоксы (сводимые к предыдущим);

6) парадоксы актива-пассива (отождествление происходящего с производимым и т.п.; к ним относятся парадоксы о необходимости начала мира, антиномии Канта); кроме того, из-за парадоксов актива-пассива возникают парадоксы отождествлений, а также следующие группы парадоксов:

7) парадоксы модальностей, которые допускают дальнейшую классификацию: отождествление возможного с действительным, ошибка смещения целей (приводящая к тому, что достаточное считается необходимым и т.п.); пренебрежение условиями возможности (что связано с парадоксами релевантности и приводит к смешению возможности с действительностью); парадокс «утренняя звезда»

8) парадоксы из-за смещения интуитивных понятий с четко определенными (они родственны семантическим парадоксам)[7, С.76-77].

В электронной энциклопедии Wikipedia приводится следующая классификация парадоксов:

I. Логические:

- парадокс импликации: несовместные посылки делают аргумент верным;

- парадокс воронов (или Во́роны Хемпеля): существование красного яблока увеличивает вероятность того, что все во́роны чёрные;

- парадокс неожиданной казни: если сказать осуждённому на казнь, что она произойдёт в неожиданный для него день этой недели, то он логически придёт к выводу, что она не может произойти ни в один из дней недели. Тогда она и будет сюрпризом;

- парадокс пьяницы: в любом непустом заведении всегда существует человек такой, что если он пьёт, то пьют и все остальные посетители;

- парадокс лотереи: вполне ожидаемо (и философски проверяемо), что данный конкретный билет не выиграет, но нельзя ожидать, что никакой билет не выиграет.

II. Парадоксы самореференции (самоотносимости):

Это хорошо известный (и хорошо изученный) класс противоречий, возникающий из-за ссылки на само себя.

- парадокс Берри: фраза «наименьшее число, которое нельзя описать менее, чем десятью словами» описывает это число девятью словами;

- парадокс Эпименида: Критянин говорит: «Все критяне - лжецы»;

- парадокс исключений: «Если у каждого правила есть исключения, то каждое правило должно иметь хотя бы одно исключение, кроме этого» …а это не исключение к правилу, которое утверждает, что у каждого правила есть исключения?

- парадокс Греллинга-Нельсона: является ли слово «гетерологичный», означающее «неприменимый к самому себе», гетерологичным словом?

- парадокс Петрония: «Ограничивайте себя во всех вещах, даже в ограничении»;

- парадокс Квина: «…влечёт за собой ложность, будучи добавленным к собственному цитированию» влечёт за собой ложность, будучи добавленным к собственному цитированию;

- парадокс Эватла (софизм Эватла): Протагор взял ученика Эватла при условии, что тот ему заплатит, когда выиграет первое дело. Случилось так, что Протагор подал иск на Эватла за то, что тот ему долго не платит. Должен ли Эватл заплатить, если он выиграет это дело (хотя выигрыш означает, что Эватл ничего не должен Протагору)?

- парадокс Рассела: Содержит ли множество всех таких множеств, которые не содержат себя, самого себя? Рассел популяризовал его в форме парадокса брадобрея: «Брадобрей бреет всех людей, которые не бреются сами. Бреет ли он себя?»

III. Неопределённые:

- парадокс Корабля Тесея: если каждый элемент корабля был заменён хотя бы один раз, можно ли считать корабль прежним кораблём?

- парадокс кучи: в какой момент куча перестанет быть кучей, если отнимать от неё по одной песчинке? Или, в какой конкретно день какой-либо человек становится лысым?

IV. Математические и статистические:http://ru.wikipedia.org/wiki/%D0%98%D0%B7%D0%BE%D0%B1%D1%80%D0%B0%D0%B6%D0%B5%D0%BD%D0%B8%D0%B5:Monty_open_door.svghttp://ru.wikipedia.org/wiki/%D0%98%D0%B7%D0%BE%D0%B1%D1%80%D0%B0%D0%B6%D0%B5%D0%BD%D0%B8%D0%B5:Monty_open_door.svg

- парадокс интересных чисел: первое неинтересное число интересно само по себе этим фактом. Поэтому неинтересных чисел не существует;

Характеристики

Тип файла
Документ
Размер
431,35 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее