159263 (737493), страница 3

Файл №737493 159263 (Формальная логика как наука о мышлении) 3 страница159263 (737493) страница 32016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Смысл закона исключенного третьего выражает формула:

А А

Где А есть суждение, А – его отрицание, – знак дизъюнкции, читается как «либо».

Этим законом исключается истинность какого-либо третьего суждения, кроме того суждения, к которому мы пришли, или его отрицания. Здесь предлагается сделать выбор из двух противоречащих друг другу суждений. Одно из них должно быть непременно истинным. При этом закон не указывает, какое именно из суждений истинно, но указывает, что истина лежит лишь в пределах этих двух суждений, а не какого-то третьего. Закон исключенного третьего имеет силу относительно любых пар суждений, в которых одно утверждает то, что отрицается в другом. Например, из высказываний: (1) «Все планеты имеют спутников» и (2) «Неверно, что все планеты имеют спутников» (или то же самое «Некоторые планеты не имеют спутников») истинным является только одно, а именно (2). Никакого «третьего высказывания», которое также было бы истинным, между ними образовать нельзя.

Суждения (1) и (2) находятся в отношении противоположности друг к другу. Заметим особо, что закон исключенного третьего имеет обязательную силу лишь для определенного вида противоположности между высказыванием и его отрицанием, а именно для отношения контрадикторной противоположности. Наш пример как раз включает суждения такого вида.

Для отношения же контрарной или так называемой диаметральной противоположности закон исключенного третьего силы не имеет. Если мы сравним суждение (1) «Все планеты имеют спутников» с суждением (3) «Ни одна планета не имеет спутников», то обнаружим, что ни одно из них не может быть истинным, оба суждения ложны. В то же время между ними угадывается некое «третье суждение» (2) «Некоторые планеты не имеют спутников», которое как раз и оказывается истинным. Суждения (1) и (3) не удовлетворяют закону исключенного третьего. Это обстоятельство в отдельных случаях может выступать показателем контрарной противоположности между суждениями. Любая пара суждений, подчиняющаяся действию закона исключенного третьего, подчиняется также и закону противоречия, но не обязательно имеет место обратное.

Несмотря на ограниченность своего применения, закон исключенного третьего играет все же значительную роль как в практике познания, так и в решении многих чисто логических вопросов. Он лежит в основе многих умозаключений и доказательств от противного (косвенных доказательств). В косвенных доказательствах устанавливается ложность противоречащего доказываемому суждению положения, что на основании закона исключенного третьего позволяет заключать об истинности доказываемого суждения.

Приведем пример. Допустим, нам надо доказать истинность следующего суждения: «Луна есть спутник планеты Земля». Для этого мы выдвигаем противоречащее суждение: «Луна не есть спутник планеты Земля». Устанавливая ложность этого суждения, мы выдвигаем такой аргумент: если бы Луна не была спутником планеты Земля, она бы не появлялась постоянно на ночном небе в ясную погоду в точно зафиксированных точках пространства. Но так как появление Луны в указанных точках и при указанных условиях есть эмпирический факт, то предположение о том, что Луна не есть спутник Земли, неверно. Следовательно, «Луна есть спутник планеты Земля». Другой аргумент, опровергающий противоречащее суждение: если бы Луна не была спутником планеты Земля, то периодичность приливов и отливов на побережье мировых океанов (6 часов) не имела бы места (не происходила). Но так как приливы и отливы в связи с движением Луны вокруг Земли доказаны наукой, наше допущение о том, что Луна не есть спутник Земли, неверно. Следовательно, истинно, что «Луна есть спутник планеты Земля».

А вот другой пример, известный как исторический факт. Сторонники геоцентрической модели мироздания, системы Птолемея-Аристотеля утверждали:

(1) «Земля есть центр Вселенной, она неподвижна, а Солнце и планеты вращаются вокруг нее». Из числа аргументов в пользу этого положения выдвигался и такой аргумент:

(2) «Земля не есть центр Вселенной; она, как и все другие планеты, вращается вокруг Солнца».

Теперь этот контраргумент подвергался критическому анализу, в частности, указывалось на то, что если бы Земля вращалась вокруг Солнца, то птицы, взлетев в небо, не смогли бы приземлиться (она ушла бы от них), а облака не могли бы зависать над Землей и улетели бы прочь. Так как ни того, ни другого никогда не происходило и не происходит, в чем мог и может убедиться каждый, то аргумент (2) оказывается ложным, тогда аргумент (1) – истинным.

Данный аргумент был опровергнут Н. Коперником, который методом наблюдений звездного неба и вычислений небесных тел пришел к выводу о том, что Земля находится в движении вокруг Солнца. Что же касается птиц и облаков, то их «привязанность» к Земле при ее движении стала поводом для дальнейших научных исследований этого явления как факта. Подобные примеры знакомы студентам из школьного курса геометрии, когда при доказательстве теорем неоднократно использовалось доказательство от противного.

Как мы могли убедиться, закон исключенного третьего не содержит указания на то, какое именно из двух противоречащих друг другу суждений истинно. Решение этого вопроса выходит за рамки логики и требует обращения к практике как критерию истины.

4.5 Закон достаточного основания

Важным условием правильного мышления является также свойство доказательности. Это свойство мысли выражается в законе достаточного основания, который формулируется следующим образом: в процессе рассуждения достоверными следует считать лишь те суждения, относительно истинности которых могут быть приведены достаточные основания.

Рассуждение, в котором истинность некоторого положения не просто утверждается, но указываются основания, в силу которых мы не можем не признать его истинным, следует считать доказательным. При этом под достаточными основаниями истинности некоторого суждения понимается совокупность обязательно истинных других суждений, из которых первое следует с логической необходимостью. В состав этих истинных суждений могут входить аксиомы, определения, суждения непосредственного восприятия, истинность которых установлена опытным путем; суждения, истинность которых доказана с помощью других истинных суждений.

В формулировке закона содержится выражение «могут быть приведены», оно означает, что основания – истинные суждения – не обязательно должны формулироваться явным образом, но могут лишь подразумеваться, хотя и могут быть всегда выявлены при уточнении формы доказательства доказываемого (основного) положения. Следование основного положения из своих «достаточных оснований» - обязательно истинных суждений – должно быть логически необходимым, т.е. таким, что при отрицании основного положения мы вступаем в противоречия с его достаточными основаниями.

Доказательное рассуждение не только утверждает истинность некоторого положения, но и обосновывает его истинность. Закон достаточного основания требует выводить новые положения из уже твердо установленных, проверенных, доказанных истин.

Закон достаточного основания выражает лишь в общем виде требование исчерпывающего учета всех оснований для каждой истины. В нем не указывается, какое именно основание должно быть в каждом отдельном случае (простого факта или ранее доказанных положений), где и каким образом обнаруживается это основание. В законе утверждается только, что оно должно быть. Особенность основания для каждой истины базируется на содержании той области знания, к которой истина относится. Приведем пример. Достаточным основанием истинности суждения (1) «Летом теплее, чем зимой» может служить показание термометра (факт эмпирический) или истинное суждение (2) «Летом ртутный столбик термометра стоит выше, чем зимой», из которого (1) следует логически необходимым образом.

Закон достаточного основания вытекает из принципа, согласно которому причинно-следственные связи имеют всеобщий характер: одно явление с необходимостью вызывает друге; всякое действие имеет свою причину, равно как всякая причина вызывает определенное действие.

Следуя указанному закону, мы должны стремиться избегать распространенной логической ошибки, в основе которой лежит иллюзия: «после этого, значит, по причине этого» (post hoc ergo propter hoc – лат.). Чтобы не впасть в эту иллюзию, мы должны опираться на знание внутренних, необходимых связей между предметами, иначе основание вывода будет легковесным, зыбким.

Большинство истин науки получено с помощью доказательств, путем обоснования через другие достоверные положения. Они могут быть либо истинами, получившими практическое подтверждение, либо результатом умозаключения из уже проверенных, т.е. достоверных истин. Закон достаточного основания требует, чтобы истина не просто утверждалась, но всегда могла быть доказана.

Характеристики

Тип файла
Документ
Размер
204,69 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее