158823 (737239), страница 2

Файл №737239 158823 (Софизмы) 2 страница158823 (737239) страница 22016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

-1>1

Дана дробь: 1/Х. Как известно, она возрастает с уменьшением знаменателя

Поэтому, т.к. ряд 5, 3, 1, -1, -3, -5 убывающий, то ряд вида 1/Х=1/5, 1/3, 1, -1, -1/3, -1/5 и т.д. есть возрастающий. Но в возрастающем ряду каждый последующий член больше предыдущего, а это значит: 1/3>1/5, 1>1/3, -1>+1...

2=1

1)Х2-X2=X2-X2; (X+X)(X-X)=X(X-X); сокращаем: X+X=X; 2X=X; 2=1.

2) Х=1; X2=X; X2-1=X-1; X+1=1, но т.к. Х=1, то 2=1.

Парадоксы математические

Здесь мы поговорим о парадоксах в разделе математики. И вот, действительно, самое парадоксальное - это то, что в математике вообще есть парадоксы.

Парадокс несоизмеримости величин

Это явление имело место в древности, когда людям были знакомы только рациональные числа.

Две однородные величины, например, длины, площади или объемы, соизмеримы, если имеется их общая мера, т.е. если существует такая однородная с ними величина, которая укладывается в них целое число раз (общий делитель). Полагалось, что все вышеперечисленные величины соизмеримы.

Но вдруг оказалось, что диагональ квадрата и его сторона не имеют такой общей меры, и их частное нельзя было выразить с помощью известных чисел. Парадокс состоял в том, что по отдельности каждая из несоизмеримых величин может быть измерена и количественно точно определена, а их отношение - нет. К примеру, если возьмем сторону квадрата и начнем ее откладывать на диагонали, то обнаружим, что она укладывается только один раз и остается остаток. Тогда, если мы уложим остаток в сторону квадрата, то все будет ОК. Но и он не умещается. Далее полученный остаток не равный 2 не умещается в остаток не равный 1 и так далее.

В результате это отношение было выражено как корень квадратный из 2. Позднее нашли и другие несоизмеримые величины, такие как отношение длины окружности к диаметру и площади круга к площади квадрата, построенному на радиусе (оба равняются числу π).

Т.к. не находилось физического истолкования этих чисел, которое находилось для рациональных (самое банальное - две коровы, высота сооружения - тридцать три целых и половина камня), то греки придумали иррациональные, т.е. "бессмысленные", числа внедрить в геометрию, обозначать ими длины определенных отрезков, а не числа.

Парадокс бесконечно малых величин

Математический кризис в этой области существовал в период XVII - XVIII веков.

Бесконечно малые - это переменные величины, стремящиеся к нулю, или, если быть точнее, к пределу, равному нулю. Проблема состояла в их туманном понимании: то они рассматриваются как числа равные нулю, то как ему неравные. Причем, при таком подходе, люди рассматривали их как постоянные величины. Тогда из этого и из названия таких величин следует, что бесконечное является чем-то завершенным.

Кризис перестал быть таковым после создания теории пределов в начале XIX века французским математиком Огюстеном Луи Коши (1789 - 1857). С того момента бесконечно малые величины рассматриваются как постоянно изменяющиеся, а не постоянные, стремящиеся к пределу, но никогда его не достигающие. Постоянно изменяющиеся числа!

Парадокс Рассела

Парадокс связан с теорией множеств.

В письме от 16 июня 1902 года Готтлобу Фреге, уже завершавшему свой трехтомный труд, частью изданный, "Обоснования арифметики", венчавший усилия логицистов, Бертран Артур Уильям Рассел (1872 - 1970) сообщил о том, что обнаружил парадокс множества всех нормальных множеств (нормальным множеством называется множество, не содержащее себя в качестве элемента), указывая на противоречивость исходных позиций Фреге, тем самым чуть-чуть его обломав. Парадокс имеет n-ое количество вариаций.

Например, "каталог всех нормальных каталогов".

Каталоги подразделяются на два вида: 1) нормальные, которые в числе перечисленных в них каталогов не упоминают себя, и 2) ненормальные, которые входят в число перечисляемых ими каталогов.

Библиотекарю дается задание составить каталог всех нормальных каталогов и только нормальных каталогов. Должен ли он при составлении своего каталога его упомянуть? Если он его не упомянет, то составленный им каталог будет нормальным. Но такой каталог должен упомянут, а тогда это уже ненормальный каталог, и из списка должен быть вычеркнут. Библиотекарь не может ни упомянуть, ни не упомянуть свой каталог.

Теперь расскажем о вариациях этого парадокса. Начнем с более простого и известного.

Парадокс парикмахера (приписывается также Бертрану Расселу)

В некой деревни (некотором взводе и т.д.), в которой живет один-единственный парикмахер, был издан указ: "Парикмахер имеет право брить тех и только тех жителей деревни, которые не бреются сами". Может ли парикмахер брить самого себя?

Парадокс "мэр города"

Каждый мэр города живет или в своем городе, или вне его. Был выделен один специальный город, где бы жили мэры, не живущие в своих городах. Где должен жить мэр этого специального города?

Парадокс Кантора (1899)

Согласно одной из теорем немецкого математика Георга Кантора (1845 - 1918), развившего уже упомянутую теорию множеств, не существует самого мощного множества. Сие ввиду того, что для любого сколь угодно мощного множества можно указать еще более мощное. С другой стороны, интуитивно очевидно, что множество всех множеств должно быть самым мощным, ведь оно включает в себя все возможные множества.

Другими словами, пусть множество всех множеств M содержит в себе множество всех своих подмножеств (ведь оно же множество всех множеств). Если первое имеет мощность m, то мощность второго 2m, что больше m. Следовательно, множество M не содержит множество всех своих подмножеств, а, значит, не может быть множеством всех множеств.

Парадокс изобретателя

Начнем с одной из его математических интерпретаций:

Попробуем доказать методом математической индукции неравенство

База при n = 1 очевидна.

Предполагая, что для некоторого k наше неравенство верно, и начиная доказательство для k + 1, получим

и

Нам остается доказать, что

- тогда наше неравенство 100% истинно.

Возведем обе части неравенства в квадрат и, после алгебраических преобразований, получим

(k + 1) (2k + 1)2 <= k (2k + 2)2 и, раскрыв скобки,

4k3 + 8k2 + 5k + 1 <= 4k3 + 8k2 + 4k

Здесь мы с ужасом обнаруживаем, что то, что мы получили неверно, а следовательно, и два предыдущих неравенства тоже. Правда, из этого нельзя делать вывод, что неверно и исходное неравенство, а можно лишь тот, что не годится данный метод доказательства - индукция.

Теперь попробуем доказать тем же методом неравенство

Т.к. это неравенство более сильное, то, казалось бы, и доказывать его не имеет смысла, ведь придем к тому же. Однако, попробуем.

База опять очевидна.

Проводя доказательство так же, сначала получим

и

Останется доказать, что

Аналогичным образом возведем в квадрат и раскроем скобки; получим

4k3 + 12k2 + 9k + 2 <= 4k3 + 12k2 + 12k + 4

И что же мы видим? Неравенство истинно. Следовательно, и исходное (то, которое более сильное) тоже верно!

Эта ситуация, когда доказать более сильное утверждение легче, чем более слабое, и называется парадоксом изобретателя. Он был известен еще и древним мыслителям, но придумал это название в начале XX века венгерский математик Д. Пойа, сказав о парадоксе следующие слова: "Легче доказать более сильную теорему, чем более слабую". Этот парадокс существует не только в математике, но и в других областях, в том числе и в жизненных ситуациях. Такое же название (и по праву) получили ситуации, когда решить более общую задачу легче, чем более узкую. Прием, позволяющий это сделать, заключается в том, чтобы свести задачу к более общей, относительно которой исходная задача будет являться лишь частным случаем. Приведу один пример:

В III веке до н. э. тиран города Сиракузы Гиерон поручил своему подданному и близкому родственнику Архимеду определить, не подмешано ли к его золотой короне, изготовленной ювелирами, менее благородное серебро. Эту частную задачу Архимед смог решить лишь как общую (т.к. о химическом анализе тогда еще и не помышляли; к тому же корону разрушать было нельзя), выявив закон "подъемной силы", то есть силы Архимеда, действующей на погруженное в жидкость тело.

Таким же образом появились на свет в математике интегральное (выросшее из изобретенного древнегреческим математиком Евдоксом Книдским (около 408 - около 355 до н. э.) метода "исчерпывания") и дифференциальное (когда Лейбниц Готфрид Вильгельм (1646 - 1716) долго бился на задачей проведения касательной к кривой в заданной точке, сведя ее к проведению секущей через две бесконечно близкие точки) исчисления, в науке изобретена пастеризация и многое-многое другое.


Вывод

Софизмом называется умышленно ложное умозаключение, которое имеет видимость правильного. Каков бы ни был софизм, он обязательно содержит одну или несколько замаскированных ошибок.

Разбор софизмов, прежде всего, развивает логическое мышление, т.е. прививает навыки правильного мышления. Обнаружить ошибку в софизме - это значит осознать ее, а осознание ошибки предупреждает от повторения ее в других математических рассуждениях. Помните, что важно добиться отчетливого понимания ошибок, иначе софизмы будут бесполезны.



Литература


  1. Ахманов А. С. Логическое учение Аристотеля

  2. Брадис В. М., Минковский В. Л., Харчева Л. К. «Ошибки в математических рассуждениях»

  3. Пельман Я. И. «Занимательная математика»

  4. В. А. Кордемский, А. А. Ахадов «Удивительный мир чисел» Математический словарь

Характеристики

Тип файла
Документ
Размер
270,56 Kb
Материал
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее