Ponatia (735574), страница 3

Файл №735574 Ponatia (Понятие) 3 страницаPonatia (735574) страница 32016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Общая характеристика операций с понятиями.

Логические операции с понятиями  это такие действия, посредством которых из одного, двух или большего числа понятий образуется новое понятие. Иными словами, это действия, позволяющие определённым образом преобразо­вывать некоторые заданные множества.

Н

Рис.10.

Преобразование понятий

Рис.9.

Преобразование понятий

апример, множе­ство студентов P и множество спортсменов Q могут быть мысленно преобразованы в класс, состоящий только из студентов, которые являются спортсменами. На рисунке 9 штриховкой показано множество, образованное посредст­вом данной операции. Эти же два множества можно под­вергнуть иной операции, получив класс спортсменов, ни один из которых не является студентом (рис. 10). Понятия, предшествующие операции, будем называть исходными, вновь полученное понятие назовем результатом соответст­вующей операции. В нашем примере исходными понятиями будут понятия «студент» и «спортсмен», результат же опе­рации в первом случае, вероятно, лучше всего выразить словосочетанием «студент  спортсмен», во втором  кон­струкцией «спортсмен, не являющийся студентом». Пораз­мыслив, можно прийти к выводу, что существуют и другие способы преобразования тех же исходных понятий, приво­дящие к различным результатам.

В различных эпизодах интеллектуальноречевой практи­ки (в различных текстах) встречаются понятия, словесная форма выражения которых позволяет рассматривать их как сложные, возникшие в результате преобразования других понятий. В таких случаях может возникнуть вопрос об исход­ных (иногда очевидных, иногда лишь предполагаемых) поня­тиях и характере произведенной с ними операции. Раскры­вая логические механизмы образования таких понятий, мы получаем возможность составить достаточно ясное представление об их содержании и объеме или, если необходимо, уточнить это представление. Рассмотренное выше понятие, выраженное словосочетанием «студент  спортсмен», недву­смысленно фиксирует область пересечения исходных клас­сов. Таковы же, например, понятия «солдат  герой России» или «журналист  международник». Первое выражает об­ласть пересечения класса солдат и множества героев России, второе  область пересечения понятий «журналист» и «спе­циалист по международным вопросам». Однако идеальная по ясности картина встречается далеко не всегда. Не столь просто охарактеризовать со стороны содержания и объема такие понятия, как, скажем, «научно-практическая конфе­ренция», «научно-техническая информация», «логико-психологический анализ», хотя они вроде бы построены по той же словообразовательной модели. Соединение некоторых исходных понятий в более сложную конструкцию не всегда осуществляется с должной степенью определённости, а иногда ведет к образованию достаточно серьёзных ошибок. Изучение логических операций с поня­тиями позволяет обнаружить внутренние, иногда скрытые механизмы подобных ошибок, способствует выработке дей­ственных навыков контроля над смысловыми свойствами текста. Объектами логических операций могут быть одно, два или неопределённо большое число понятий. Примерами ло­гических операций с одним понятием служат рассмотренные ранее операции обобщения и ограничения. Нужно отметить, однако, что есть ситуации, допускающие различные вариан­ты анализа. В понятии «симфония Д. Д. Шостаковича» оди­наково правомерно усматривать результат любой из следую­щих операций: 1) ограничение понятия «симфония», 2) ог­раничение понятия «музыкальное произведение Д. Д. Шос­таковича», 3) объединение указанных в пунктах 1 и 2 понятий способом, который позволяет зафиксировать в новом поня­тии область их пересечения.

Отрицание понятия.

Из операций с одним исходным понятием по степени значимости наибольшего внимания заслуживает операция, именуемая отрицанием. В результате отрицания произвольного понятия P образуется новое понятие не-P. Объем этого нового понятия включает в себя лишь те объек­ты х, о каждом из которых можно высказать истинное суж­дение х есть не-Р. Скажем, в результате отрицания понятия «журналист» получаем множество «не-журналистов», путем отрицания понятия «учебник» переходим к понятию «не-­учебник» и т. п. Чтобы отличить собственно логическое отрицание от не­которых грамматических форм, частица «не» отделяется от исходного понятия дефисом. Этим подчерки­вается, что в результате логического отрицания образуется понятие, связанное с исходным отношением контрадикторности, а не контрарности.

С

не-P

Рис.11.

Отрицание понятия

мысл отрицания произвольного понятия Р хорошо передается графической схемой (рис.11), где прямоугольни­ком обозначен универсальный класс, а результат операции пока­зан штриховкой. Эта же схема де­лает наглядной закономерную за­висимость, выражаемую форму­лой не не-P=P. Формула показы­вает объемное равенство некото­рого понятия с результатом его двойного отрицания (так назы­ваемый закон двойного отрица­ния для классов). И действительно, исходному пункту;

поэтому двойное отрицание иног­да называется мнимым (дважды отрицая данное понятие, мы, по существу, его не отрицаем).

Сложение и умножение понятий.

Из операций с двумя исходными понятиями (или боль­шим их числом) следует выделить логическое сложение и логическое умножение. Результат сложения понятий Р и Q будем называть их логической суммой и обозначать P+Q, а результат умножения тех же понятий назовем их логическим произведением и обозначим Р•Q.В объём понятия Р+Q входят те объекты, каждый из которых принадлежит хотя бы одному из исходных классов. Иными словами, х принадлежит классу Р+Q, если истинно суждение х есть Р или Q (где союз «или» употребляется в неисключающем его значении). В объём понятия PQ входят те объекты, каждый из которых принадлежит обоим исходным классам. Иначе говоря, х при­надлежит классу Р•Q если истинно суждение х есть P и Q, где союз «и» фиксирует одновременное вхождение х в дан­ные классы.

Различие между этими операциями иллюстрируют гра­фические схемы. На рисунках 12  15 показана логическая сумма, а на рисунках 16  19  логическое произведение понятий Р и Q с учетом четырех известных нам видов отношений. Лишь для равнообъемных понятий итоги сложения и умножения со­впадают, в трех других случаях классы Р+Q и Р•Q принци­пиально различны.





Рис.12.

Сложение равнообъёмных понятий

Рис.13.

Сложение подчинённых понятий






Рис.14.

Сложение перекрещивающихся понятий

Рис.15

.Сложение внеположенных понятий


Это и понятно, поскольку операция сло­жения, в сущности, объединяет исходные множества, тогда как операция умножения образует класс, соответствующий области их пересечения. Уместно подчеркнуть, что результат умножения родового и видового понятий объёмно равен видовому, а результат сложения тех же понятий  родовому (см. рис.17 и 13). Если исходные понятия внеположенные, то их сложение образует класс, полностью включающий оба множества (см. рис.15); логическое произведение тех же понятий ведет к образованию нулевого класса (см. рис.19).




Рис.16.

Умножение равнообъёмных понятий

Рис.17.

Умножение подчинённых понятий






Рис.18

.Умножение перекрещивающихся понятий


Рис.19.

Умножение внеположенных понятий


С теоретической точки зрения сопоставление классов P+Q и Р•Q представляет интерес для изучения двух суще­ственно разнящихся способов соединения некоторых произ­вольных множеств в новое (сложное) множество. Практи­ческий аспект проблемы имеет непосредственное отноше­ние к выбору союзов и других средств организации текста, при помощи которых несколько исходных смысловых еди­ниц объединяются друг с другом, образуя новое понятие. Пользуясь символическим языком, то есть, применяя ло­гические постоянные « + » и « • », мы легко улавливаем и точно фиксируем различие между сложением и умножением понятий. В естественном речевом общении (в нефор­мализованных текстах) объединение понятий не всегда дает достаточно ясную картину. Объясняется это следующими обстоятельствами. Во-первых, рассмотренные операции не исчерпывают всех возможных способов связи исходных по­нятий. Во-вторых, и это

главное, любые операции, включая сложение и умножение, могут выражаться различными средствами естественной речевой коммуникации. В логике договариваются читать выражение P+Q как Р или Q, а выражение Р•Q как Р и Q, рассматривая союзы «или», «и» в качестве наиболее удачных словесных эквивалентов соответствующих операций. Однако в действительности не­редко используются и другие средства выражения этих опе­раций, в чем мы имели возможность убедиться на примере словосочетаний типа «студент-спортсмен», «журналист-международник» и т. п., где логическое умножение пред­ставлено дефисом. Что касается союзов «или» и «и», то нужно отметить их многозначность, способную в известных ситуациях созда­вать достаточно неопределенное представление о характере связи между некоторыми исходными понятиями. Удачна ли, например, следующая формулировка одного из правил поль­зования городским транспортом: «Безбилетный проезд и бес­платный провоз багажа наказываются штрафом»? Предста­вим себе два подмножества, которые могут быть выделены во множестве пассажиров-нарушителей. В одно из них вой­дут пассажиры, не взявшие билета, в другое  не оплатив­шие провоз багажа. Если союз «и» рассматривать, как пока­затель логического умножения, то придется признать, что штраф должен быть наложен только на тех пассажиров, ко­торые совершили сразу два проступка (но не какой-то один из них). Разумеется, житейский смысл ситуации, предусмот­ренной данным правилом, настолько ясен, что всякие раз­ночтения этой формулировки, вероятно, были бы признаны казуистикой, но все же использование союза «или» здесь следует признать предпочтительным. Аналогичный харак­тер носит следующая фраза: «Атеросклероз чаще всего по­ражает жителей больших городов и людей умственного труда». Исходные понятия «житель большого города» и «че­ловек умственного труда» находятся в отношении перекре­щивания. Вследствие недостаточной определенности их объединения в сложное понятие (оно выделено курсивом) воз­можны два варианта прочтения (истолкования, понимания) фразы: 1) атеросклероз чаще всего поражает жителей больших городов, занимающихся умственным трудом (логическое ум­ножение: см. рис.18); 2) атеросклероз чаще всего поражает вообще жителей больших городов или вообще людей умственного труда (ло­гическое сложение; см. рис.14). Поскольку второй вариант представляется более удач­ным для выражения данной мысли, и здесь также, вероятно, следовало бы отдать предпочтение союзу «или».

Характеристики

Тип файла
Документ
Размер
183 Kb
Материал
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее