156252 (735478), страница 7

Файл №735478 156252 (Методы и формы научного познания) 7 страница156252 (735478) страница 72016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 7)

В научном познании могут быть случаи, когда при исследо­вании некоторых явлений, ситуаций, проведение реальных экс­периментов оказывается вообще невозможным. Этот пробел в познании может восполнить только мысленный эксперимент.

Научная деятельность Галилея, Ньютона, Максвелла, Карно, Эйнштейна и других ученых, заложивших основы совре­менного естествознания, свидетельствует о существенной роли мысленного эксперимента в формировании теоретических идей. История развития физики богата фактами использования мыс­ленных экспериментов. Примером могут служить мысленные эксперименты Галилея, приведшие к открытию закона инерции. «...Закон инерции, — писали А. Эйнштейн и Л. Инфельд, — нельзя вывести непосредственно из эксперимента, его можно вывести умозри­тельно — мышлением, связанным с наблюдением. Этот экспери­мент никогда нельзя выполнить в действительности, хотя он ведет к глубокому пониманию действительных экспериментов» 34.

Мысленный эксперимент может иметь большую эвристичес­кую ценность, помогая интерпретировать новое знание, полу­ченное чисто математическим путем. Это подтверждается мно­гими примерами из истории науки.

Метод идеализации, оказывающийся весьма плодотворным во многих случаях, имеет в то же время определенные ограни­чения. Кроме того, любая идеализация ограничена конк­ретной областью явлений и служит для решения только опреде­ленных проблем. Это, хорошо видно хотя бы на примере выше­указанной идеализации «абсолютно черное тело».

Основное положительное значение идеализации как метода научного познания заключается в том, что получаемые на ее ос­нове теоретические построения позволяют затем эффективно ис­следовать реальные объекты и явления. Упрощения, достигаемые с помощью идеализации, облегчают создание теории, вскры­вающей законы исследуемой области явлений материального мира. Если теория в целом правильно описывает реальные явле­ния, то правомерны и положенные в ее основу идеализации.

4.4.3. Формализация.

Под формализацией понимается особый подход в научном познании, который заключается в использовании специальной символики, позволяющей отвлечься от изучения реальных объектов, от содержания описывающих их теоретических поло­жений и оперировать вместо этого некоторым множеством сим­волов (знаков).

Этот прием заключается в построении абстрактно-математи­ческих моделей, раскрывающих сущность изучаемых процессов действительности. При формализации рассуждения об объектах переносятся в плоскость оперирования со знаками (формулами). Отношения знаков заменяют собой высказывания о свойствах и отношениях предметов. Таким путем создается обобщенная зна­ковая модель некоторой предметной области, позволяющая обна­ружить структуру различных явлений и процессов при отвле­чении от качественных характеристик последних. Вывод одних формул из других по строгим правилам логики и математики представляет формальное исследование основных характеристик структуры различных, порой весьма далеких по своей природе явлений.

Ярким примером формализации являются широко исполь­зуемые в науке математические описания различных объектов, явлений, основывающиеся на соответствующих содержательных теориях. При этом используемая математическая символика не только помогает закрепить уже имеющиеся знания об исследу­емых объектах, явлениях, но и выступает своего рода инстру­ментом в процессе дальнейшего их познания.

Для построения любой формальной системы необходимо: а) задание алфавита, т. е. определенного набора знаков; б) задание правил, по которым из исходных знаков этого алфавита могут быть получены «слова», «формулы»; в) задание правил, по кото­рым от одних слов, формул данной системы можно переходить к другим словам и формулам (так называемые правила вывода).

В результате создается формальная знаковая система в виде определенного искусственного языка. Важным достоинством этой системы является возможность проведения в ее рамках исследо­вания какого-либо объекта чисто формальным путем (оперирова­ние знаками) без непосредственного обращения к этому объекту.

Другое достоинство формализации состоит в обеспечении краткости и четкости записи научной информации, что откры­вает большие возможности для оперирования ею.

Разумеется, формализованные искусственные языки не об­ладают гибкостью и богатством языка естественного. Зато в них отсутствует многозначность терминов (полисемия), свойствен­ная естественным языкам. Они характеризуются точно постро­енным синтаксисом (устанавливающим правила связи между знаками безотносительно их содержания) и однозначной семан­тикой (семантические правила формализованного языка впол­не однозначно определяют соотнесенность знаковой системы с определенной предметной областью). Таким образом, формали­зованный язык обладает свойством моносемичности.

Возможность представить те или иные теоретические положе­ния науки в виде формализованной знаковой системы имеет боль­шое значение для познания. Но при этом следует иметь в виду, что формализация той или иной теории возможна только при уче­те ее содержательной стороны. «Голое матема­тическое уравнение еще не представляет физической теории, что­бы получить физическую теорию, необходимо придать математи­ческим символам конкретное эмпирическое содержание» 35.

Расширяющееся использование формализации как метода теоретического познания связано не только с развитием мате­матики. В химии, например, соответствующая химическая сим­волика, вместе с правилами оперирования ею явилась одним из вариантов формализованного искусственного языка. Все бо­лее важное место метод формализации занимал в логике по мере ее развития. Труды Лейбница положили начало созданию мето­да логических исчислений. Последний привел к формированию в середине XIX в. математической логики, которая во второй половине нашего столетия сыграла важную роль в развитии ки­бернетики, в появлении электронных вычислительных машин, в решении задач автоматизации производства и т. д.

Язык современной науки существенно отличается от есте­ственного человеческого языка. Он содержит много специаль­ных терминов, выражений, в нем широко используются сред­ства формализации, среди которых центральное место при­надлежит математической формализации. Исходя из потреб­ностей науки, создаются различные искусственные языки, пред­назначенные для решения тех или иных задач. Все множество созданных и создаваемых искусственных формализованных языков входит в язык науки, образуя мощное средство научно­го познания.

4.4.4. Аксиоматический метод.

При аксиоматическом построении теоретического знания сна­чала задается набор исходных положений, не требующих дока­зательства (по крайней мере, в рамках данной системы знания). Эти положения называются аксиомами, или постулатами. Затем из них по определенным правилам строится система выводных предложений. Совокупность исходных аксиом и выведенных на их основе предложений образует аксиоматически построенную тео­рию.

Аксиомы — это утверждения, доказательства истинности кото­рых не требуется. Число аксиом варьируется в широких границах: от двух-трех до нескольких десятков. Логический вывод позволяет переносить истин­ность аксиом на выводимые из них следствия. При этом к аксиомам и выводам из них предъяв­ляются требования непротиворечивости, независимости и полноты. Следование опре­деленным, четко зафиксированным правилам вывода позволяет упорядочить процесс рассуждения при развертывании аксиомати­ческой системы, сделать это рассуждение более строгим и кор­ректным.

Чтобы задать аксио­матической систему, требуется некоторый язык. В этой связи широко используют символы (значки), а не громоз­дкие словесные выражения. Замена разговорного языка логи­ческими и математическими символами, как было указано выше, называется формали­зацией. Если формализация имеет место, то аксиоматическая система является формальной, а положения системы приобре­тают характер формул. Получаемые в результате вывода форму­лы называются теоремами, а используемые при этом аргумен­ты — доказательствами теорем. Такова считающаяся чуть ли не общеизвестной структура аксио­матического метода.

4.4.5. Метод гипотезы.

В методологии термин «гипотеза» используется в двух смыслах: как форма существования знания, характеризующаяся проблематичностью, недостоверностью, нуждаемостью в доказательстве, и как метод формирования и обоснования объяс­нительных предложений, ведущий к установлению законов, принци­пов, теорий. Гипотеза в первом смысле слова включается в метод гипотезы, но может употребляться и вне связи с ней.

Лучше всего представление о методе гипотезы дает ознакомление с его структурой. Первой стадией метода гипотезы является ознаком­ление с эмпирическим материалом, подлежащим теоретическому объ­яснению. Первоначально этому материалу стараются дать объяснение с помощью уже существующих в науке законов и теорий. Если таковые отсутствуют, ученый переходит ко второй стадии — выдвижению до­гадки или предположения о причинах и закономерностях данных явлений. При этом он старается пользоваться различными приемами исследования: индуктивным наведением, аналогией, моделированием и др. Вполне допустимо, что на этой стадии выдвигается несколько объяснительных предположений, несовместимых друг с другом.

Третья стадия есть стадия оценки серьезности предположения и отбора из множества догадок наиболее вероятной. Гипотеза проверяется прежде всего на логическую непротиворечивость, особенно если она имеет сложную форму и разворачивается в систему предположений. Далее гипотеза проверяется на совместимость с фундаментальными интертеоретическими принципами данной науки.

На четвертой стадии происходит разворачивание выдвинутого пред­положения и дедуктивное выведение из него эмпирически проверяемых следствий. На этой стадии возможна частичная переработка гипотезы, введение в нее с помощью мысленных экспериментов уточняющих деталей.

На пятой стадии проводится экспериментальная проверка выведен­ных из гипотизы следствий. Гипотеза или получает эмпирическое под­тверждение, или опровергается в результате экспериментальной проверки. Однако эмпирическое подтверждение следствий из гипотезы не гарантирует ее истинности, а опровержение одного из следствий не свидетельствует однозначно о ее ложности в целом. Все попытки построить эффективную логику подтверждения и опровержения теоре­тических объяснительных гипотез пока не увенчались успехом. Статус объясняющего закона, принципа или теории получает лучшая по результатам проверки из предложенных гипотез. От такой гипотезы, как правило, требуется максимальная объяснительная и предсказательная сила.

Знакомство с общей структурой метода гипотезы позволяет опре­делить ее как сложный комплексный метод познания, включающий в себя все многообразие его и форм и направленный на установление законов, принципов и теорий.

Иногда метод гипотезы называют еще гипотетико-дедуктивным методом, имея в виду тот факт, что выдвижение гипотезы всегда сопровождается дедуктивным выведением из него эмпирически прове­ряемых следствий. Но дедуктивные умозаключения — не единствен­ный логический прием, используемый в рамках метода гипотезы. При установлении степени эмпирической подтверждаемости гипотезы ис­пользуются элементы индуктивной логики. Индукция используется и на стадии выдвижения догадки. Существенное место при выдвижении гипотезы имеет умозаключение по аналогии. Как уже отмечалось, на стадии развития теоретической гипотезы может использоваться и мыс­ленный эксперимент.

Объяснительная гипотеза как предположение о законе — не един­ственный вид гипотез в науке. Существуют также «экзистенциальные» гипотезы — предположения о существовании неизвестных науке эле­ментарных частиц, единиц наследственности, химических элементов, новых биологических видов и т. п. Способы выдвижения и обоснования таких гипотез отличаются от объяснительных гипотез. Наряду с основ­ными теоретическими гипотезами могут существовать и вспомогатель­ные, позволяющие приводить основную гипотезу в лучшее соответствие с опытом. Как правило, такие вспомогательные гипотезы позже эли­минируются. Существуют и так называемые рабочие гипотезы, которые позволяют лучше организовать сбор эмпирического материала, но не претендуют на его объяснение.

Важнейшей разновидностью метода гипотезы является метод ма­тематической гипотезы, который характерен для наук с высокой сте­пенью математизации. Описанный выше метод гипотезы является методом содержательной гипотезы. В его рамках сначала формулиру­ются содержательные предположения о законах, а потом они получают соответствующее математическое выражение. В методе математической гипотезы мышление идет другим путем. Сначала для объяснения количественных зависимостей подбирается из смежных областей науки подходящее уравнение, что часто предполагает и его видоизменение, а затем этому уравнению пытаются дать содержательное истолкование.

Сфера применения метода математической гипотезы весьма огра­ничена. Он применим прежде всего в тех дисциплинах, где накоплен богатый арсенал математических средств в теоретическом исследова­нии. К таким дисциплинам прежде всего относится современная фи­зика. Метод математической гипотезы был использован при открытии основных законов квантовой механики.

4.5. Общенаучные методы, применяемые на эмпирическом и теоретическом уровнях познания.

4.5.1. Анализ и синтез.

Под анализом понимают разделение объекта (мысленно или реально) на составные части с целью их отдельного изучения. В качестве таких частей могут быть какие-то вещественные эле­менты объекта или же его свойства, признаки, отношения и т. п.

Характеристики

Тип файла
Документ
Размер
277 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6439
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее