29101-1 (735168), страница 2

Файл №735168 29101-1 (Теоретическое и эмпирическое знания) 2 страница29101-1 (735168) страница 22016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

"Эффект целостности", скачкообразное появление новизны в сложных целостных образованиях (или понятиях) в биологии играют несравненно более важную роль, чем в других естественных науках.

В силу этого обстоятельства закономерно, что наиболее точно определяемые идеализированные объекты сформировались в таких областях биологического знания, которые имеют депо с молекулярно-генетическим уровнем организации живого. Открытие универсальности генетического кода, общее доказательство биохимической универсальности живого создали теоретическую базу математизации знания, поскольку был осуществлен переход к типу идеальных объектов, характерных для физики. Математизация молекулярно-биологического знания оказывается включенной не только в совокупность плодотворных средств познания, но и в процесс определения биологического объекта. Возрастание роли математизации находится в тесной взаимосвязи с развитием эксперимента - многообразие и комплексность его методик, охват многих переменных, переход к многофакторному эксперименту обусловливают потребность в создании логической схемы эксперимента, в его математическом планировании. Необходимость в постоянном обращении к "натуре", к природным условиям протекания того или иного процесса жизнедеятельности создает ограничения в процессе идеализации, направляя его преимущественно в сторону моделирования.

Известно, что несмотря на "всемогущество" молекулярной биологии, прижизненный эксперимент делает лишь первые шаги. Как правило, экспериментатор имеет депо с изъятыми ми реального процесса структурами и отдельными звеньями этого процесса. В этом смысле можно говорить о том, что сегодня происходит накопление и описание фактов, причем фактов о моделях жизненно важных соединений. Моделирование столь глубоко пронизывает все направления молекулярно-биологического исследования, что подчас пропадает грань между моделью и оригиналом, т.е. "живущей" структурой, включенной в бесконечно многообразную сеть взаимодействий, прямых и опосредованных, не только внутри целостного организма, но и вне его. Такое отвлечение необходимо для точного знания основных определений структуры, но тем не менее это знание остается знанием модели. Методологический смысл этого утверждения раскрывается в полной мере в тех случаях, когда совершается прямая экстраполяция знания, полученного на молекулярно-генетическом уровне, на область решения общебиологических проблем, на закономерности существования иных уровней жизни. Неразличимость оригинала и модели, непроработанность понятия биологического объекта ведут к абсолютизации "элементарности" и тем самым повторению ошибок, преодоленных как философским, так и естественно-научным, особенно физическим, знанием.

Возможно выделить несколько классов модельных объектов молекулярной биологии с тем, чтобы подчеркнуть необходимость дифференцированного к ним подхода и специфичность возникающих при этом гносеологических проблем. Первая группа объектов представляет истинные метаболиты, то есть, казалось бы, именно те структуры, которые непосредственно осуществляют процесс жизнедеятельности. Однако влияние условий и методов физико-химического их изучения заставляют нас рассматривать биохимические структуры in vitro как модели оригиналов, включенных в реальный процесс организма. Депо здесь не только в том, что выделение, очистка, аналитическое расчленение биохимической структуры чреваты подчас непредсказуемыми его изменениями. Главное заключается в самом факте ее изоляции из совокупности взаимодействий внутри живого организма. Функционирование структуры, освоенное на "языке" физико-химических закономерностей, оставляет вне поля зрения зависимость этого функционирования от иерархии целостных биологических систем, в которую включена эта структура. Более того, даже на уровнях биохимических структур задача эксперимента вынуждает "отсекать" те взаимодействия, которые кажутся несущественными, те факторы, которые сознательно не берутся в расчет. Но именно неконтролируемые факторы могут быть причиной вариабельности изучаемой переменной. Стараясь ограничить задачу и получить точный результат, экспериментатор старается всеми средствами снизить вариабельность признака, сужая тем самым и зону адекватности результатов, и значение получаемых данных.

РАЗДЕЛ 3. ФИЛОСОФСКИЕ АСПЕКТЫ ПРОЦЕДУР МОДЕЛИРОВАНИЯ В СОВРЕМЕННОЙ БИОЛОГИИ.

Всякое вновь изучаемое явление или процесс бесконечно сложно и многообразно и потому до конца принципиально не познаваемо и не изучаемо. Поэтому, приступая к изучению явления или процесса, исследователь заменяет его схематической моделью, которая выбирается тем более сложной, чем подробнее и точнее нужно изучить упомянутое явления. В модели сохраняется только самые существенные стороны изучаемого явления, а все мало существенные свойства и закономерности отбрасываются.

Какие стороны изучаемого явления необходимо сохранить в модели и какие отбросить, зависит от постановки задачи исследований. Цель и задачи исследований формулируются перед началом разработки теории еще неизученного явления или уточнения уже существующей теории с целью более адекватного описания изучаемого процесса или явления. Построение теории начинается с выбора некоторого достаточного множества понятий и определения тех объектов, с которыми будет оперировать формируемая теория. Иногда список исходно определяемых понятий и объектов называют терминами теории. Они должны быть определены так, чтобы воспринимались любым исследователем однозначно.

Далее необходимо ввести, при построении модели явления, самые необходимые свойства определяемых объектов (“кирпичей” теории) и правила их взаимодействия и преобразования. Список введенных свойств и правил должен быть полным, т. е. таким, оперируя с которым можно осуществить любое действие по решению поставленных в исследовании задач и доведения решения логического и однозначного результата. Указанный список должен быть логически непротиворечивым, иначе создаваемая теория приведет к ошибочным заключениям. Вводимые правила должны быть выполнимы, а результаты их использования однозначными и определенными.

Выделенное множество объектов-терминов теории и правил их преобразования должно допускать проверку практикой или иными надежными методами. При этом выбранная модель должна обеспечивать необходимую точность результатов.

Метод моделирования в биологии является средством, позволяющим устанавливать все более глубокие и сложные взаимосвязи между биологической теорией и опытом.

В последнее столетие экспериментальный метод в биологии начал наталкиваться на определенные границы, и выяснилось, что целый ряд исследований невозможен без моделирования. Если остановиться на некоторых примерах ограничений области применения эксперимента в биологии, то они будут в основном следующими:

а) эксперименты могут проводиться лишь на ныне существующих объектах (невозможность распространения эксперимента в область прошлого);

б) вмешательство в биологические системы иногда имеет такой характер, что невозможно установить причины появившихся изменений (вследствие вмешательства или по другим причинам);

в) некоторые теоретически возможные эксперименты неосуществимы вследствие низкого уровня развития экспериментальной техники;

г) большую группу экспериментов, связанных с экспериментированием на человеке, следует отклонить по морально-этическим соображениям.

Но моделирование находит широкое применение в области биологии не только из-за того, что может заменить эксперимент. Оно имеет большое самостоятельное значение, которое выражается, по мнению ряда авторов, в целом ряде преимуществ:

с помощью метода моделирования на одном комплексе данных можно разработать целый ряд различных моделей, по-разному интерпретировать исследуемое явление, и выбрать наиболее плодотворную из них для теоретического истолкования.

в процессе построения модели можно сделать различные дополнения к исследуемой гипотезе и получить ее упрощение.

в случае сложных математических моделей можно применять ЭВМ.

открывается возможность проведения модельных экспериментов (синтез аминокислот по Миллеру, модельные эксперименты на подопытных животных).

Все это ясно показывает, что моделирование выполняет в биологии самостоятельные функции и становится все более необходимой ступенью в процессе создания теории. Однако моделирование сохраняет свое эвристическое значение только тогда, когда учитываются границы применения всякой модели. Особенно выразительно это показано Р.С. Карпинской на модели минимальной клетки. Эта модель возникла как результат познания биохимической универсальности жизни и имеет методологическое значение для моделирования основных ее закономерностей. Минимальная клетка представляет собой модель основной единицы жизни и охватывает лишь мембранную, репродукционную системы и систему снабжения энергией. Таким образом, задача состоит в том, чтобы с ее помощью воспроизвести наиболее общие жизненные структуры.

И хотя при этом остается неучтенным аспект развития, модель минимальной клетки имеет огромное значение для доказательства единства органического мира. Однако эта модель не выходит за границы биохимического подхода к жизни, который преимущественно "направлен на доказательство ее стабильных, универсальных и неизменных характеристик". С другой стороны, модель минимальной клетки может быть использована и для разграничения определенных качественных ступеней процесса развития. Она, - как и любая другая модель, имеет свою область применимости и позволяет распознавать и реконструировать определенные закономерности. Тем самым эта модель выполняет существенные функции в процессе разработки теории.

Для более глубокого понимания значения и сущности моделирования в биологии следует остановиться на проблемах моделирования в истории биологической науки.

Моделирование как научный метод в биологии было впервые описано и сознательно использовано Отто Бючии и Стефаном Ледуком в 1892 году. С точки зрения истории науки интересно, что методы моделирования в биологии стали применяться сознательно лишь тогда, когда благодаря появлению эволюционной теории Дарвина и созданию генетики в развитии биологической теории был сделан крупный скачок, и биология преступила к исследованию все более сложных биотических связей.

Так, например, возникновение популяционной генетики тесно связано с моделью Харди и Вейнберга. Глубокое проникновение в объективные связи на макро- и микроуровнях живого, а также переход к изучению надорганизменных систем вынудили исследователей обратиться к методу моделирования. Все изменения, происходящие в естественных популяциях, имеют очень сложную природу из-за взаимодействия многих факторов эволюции, так что только исследование более простых моделей может дать представление о значении отдельных эволюционных факторов.

Существенную роль моделирование играло и играет в развитии молекулярной биологии. Одним из известных примеров применения методов моделирования является разработка структурной модели ДНК, которую создали на основе ренгеноструктурного анализа и химических исследований, и интерпретировали Уотсон и Крик (1953г.). Эта модель особенно выразительно показывает взаимосвязь между экспериментальными методами и методами моделирования при дальнейшем развитии биологической теории. Вопросы, связанные с дальнейшим применением моделирования в молекулярной биологии широко рассматриваются в работе немецкого исследователя Э. Томаса.

В общенаучном плане очевидно, что прогресс в технологии эксперимента увеличивает возможности более полного учета взаимодействия, более системного отражения в модели свойств оригинала. Однако реализация этих возможностей предполагает подключение методологического подхода, привносящего в отношение к объекту четко сформулированные вопросы о том, что же понимается под объектом в мире модельных представлений биологии, каковы пути создания этих представлений и их апробации в общебиологическом контексте?

При использовании таких моделей, как синтетические биополимеры и рекомбинантные молекулы, создаваемые генной инженерией, возникают определенные сложности. Их заведомо искусственный характер четко обозначает функцию моделей, которые используются не только для накопления структурно-функционального знания молекулярного уровня живого, но и для определения конкретных путей изменения наследственности. На постановку исследовательских задач воздействуют и возникающие в генной инженерии социально-этические проблемы, что ведет к объединению методологических и мировоззренческих аспектов научной деятельности. Проблемы экстраполяции знания, столь важные в любом моделировании, оказываются составной частью более широкого круга вопросов, включая вопрос о социальной роли биологии.

Своя специфика процедур моделирования, создания идеального объекта присуща и таким областям молекулярной биологии, которые имеют депо с традиционными объектами - дрозофилой, вирусами, фагами, бактериями. Будучи наиболее фундаментальными объектами молекулярной биологии и молекулярной генетики, вирусы и бактерии представляют собой "природные" модели, сочетающие в себе физико-химическую индивидуальность и биологическую специфичность. Относительная простота их организации позволяет испытывать на них весь тот комплекс методов и подходов, взаимодействие которых лежит в основе достигнутых успехов современной биологии.

Характеристики

Тип файла
Документ
Размер
186,16 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7029
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее