71036-1 (733704), страница 2

Файл №733704 71036-1 (Имитационное биомеханическое моделирование как метод изучения двигательных действий человека) 2 страница71036-1 (733704) страница 22016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

в) рациональный способ ее применения [20, 12];

г) корригируется поведение реальной системы (например, тактические действия спортсмена на дистанции [20] и

д) делается предпочтительный выбор техники движений [6, 41].

Поскольку при моделировании биологических систем часть компонентов неизвестны или известны неточно, имитационная модель, описывающая биологический процесс, является всего лишь его копией. В зависимости от точности модельных блоков результаты компьютерного перебора модельных вариантов позволяют: а) рассчитать искомые параметры или б) определить тенденции в поведении биологической системы, в том числе и антропоморфного механизма.

Изменение некоторых входных данных антропоморфной модели влияет на силы, моменты, мощности в суставах, механическую работу, поэтому исследователь может определить, каким образом каждый параметр влияет на конечный результат. Такая постановка имитационной задачи сводится к ответу на вопрос: "Что, если?".

Имитационное моделирование в биомеханике . Метод имитационного моделирования применительно к биомеханическим задачам позволяет, не регистрируя кинематику и динамику двигательного действия, только по кинетограмме, созданной на компьютере:

а) оценить [6, 41] максимальные усилия мышц;

б) определить суставы, на которые больше всего падает нагрузка с целью предотвращения травм;

в) рассчитать механические энергозатраты и разработать эффективные варианты двигательных действий и т. п.

При построении имитационных антропоморфных компьютерных моделей исходили из того, что движение человека можно представить в виде определенной последовательности фаз, повторяющихся двигательных циклов. В большинстве локомоций человека кинематические параметры движения достаточно хорошо изучены. Известны временная длительность фаз, средняя скорость звеньев в фазах, углы и угловая скорость в суставах в начале и конце каждой фазы. Так, нормальная ходьба состоит из следующих фаз: переднего толчка, заднего толчка и маха. В беге на коньках фазовый состав движения следующий: фазы свободного проката (I фаза), одноопорного отталкивания (II фаза) и двухопорного отталкивания (III фаза) [18]. Рассмотрим задачу имитационного моделирования локомоций человека на примере бега на коньках.

Задание кинематических характеристик локомоций . При моделировании движения человека с помощью ЭВМ разработали следующий алгоритм:

а) модели тела человека придавали форму, соответствующую началу/окончанию фаз, например для бега на коньках такие положения, как "начало свободного проката", "начало одноопорного" и "окончание двухопорного положения" (рис. 1), назвали их "базисные кинематические положения";

б) задавали время между фазами и среднюю скорость полюса модели (тазобедренного сустава) в фазах;

в) в качестве интерполирующей функции - математической зависимости, дающей кинематическую последовательность между базисными точками, применяли сплайны (кубический сглаживающий или интерполяционный). Использование сплайна позволяет получить кинетограмму движения с любым временным интервалом между точками.

При выборе математической зависимости, связывающей время и кинематику движения, необходимо учитывать:

1) наличие "разрывов" в производных, т.е. таких элементов в фазах, при которых происходят быстрые изменения в скорости. Например, при постановке стопы на опору при ходьбе, беге, прыжках происходит резкое изменение вертикального ускорения. Следовательно, если рассматривать локомоции с быстро меняющейся скоростью за аппроксимирующую функцию, следует взять тригонометрические полиномы [25] или кусочно-полиномиальные функции, дающие лучшее приближение модельной кинематики к реальной в точках "разрыва" скоростей [2];

2) в том случае, если моделируются движения, у которых отсутствуют быстрые изменения скоростей, например: бег на коньках, плавание, бег на лыжах, то при построении кинетограммы подобных локомоций на ЭВМ можно использовать гладкие функции типа полиномов: алгебраического или интерполяционного сплайна [29], сглаживающих сплайнов 3-й или 5-й степени.

Начало свободного проката (А)

Начало одноопорного отталкивания (Б)

Начало двухопорного отталкивания (В)

Рис. 1. Базисные кинематические положения при моделировании бега на коньках

Рис. 2. Положительное направление моментов в суставах толчковой ноги

Рис. 3. Механическая работа в суставах толчковой ноги относительно оси X инерциального базиса при разной скорости бега на коньках

Необходимо отметить, что математические зависимости, описывающие кинематику модели (сплайны, тригонометрические полиномы), весьма чувствительны к способу задания начальных (базисных) кинематических данных и к краевым условиям [35]. Например, произвольность по времени между базисными точками может привести к тому, что кинетограмма модели станет существенно отличаться от реального движения.

Для того чтобы избежать искажения кинематики в имитационной модели перед ее созданием поступили следующим образом:

а) исследовали кинематику моделируемой локомоции (бег на коньках по прямой) с помощью видеорегистрирующей методики. Наличие исходных кинематических данных с дискретностью 40 мс (частота видеорежима PAL) дает возможность с приемлемой точностью определить кинематические параметры модели;

б) чтобы краевые условия не влияли на скорость и ускорение изучаемого движения, справа и слева от изучаемого цикла задавали дополнительно не менее трех фаз [41].

Трехмерная имитационная модель локомоций человека (на примере бега на коньках). Пространственная имитационная модель локомоций человека была реализована для бега на коньках по прямой. Уравнения модели, описывающие трехмерное движение звеньев тела, даны в [10]. Построение имитационной модели проходило в несколько этапов:

1. На первом этапе определили масс-инерционные характеристики сегментов тела конькобежца : массы, моменты инерции звеньев, положения центров масс и биомеханические длины звеньев [7, 9].

2. На втором этапе исследовали особенности движения конькобежца в двухопорной фазе. Для этого оценили величину поперечного смещения звеньев тела конькобежца, рассчитали центробежную силу, действующую на толчковый конек, и тем самым ввели ограничения на "разгрузку толчковой ноги" в двухопорной фазе. При расчете загрузки опорной ноги и моментов в суставах применяли уравнения из работы [5].

3. На третьем этапе определили аэродинамическое сопротивление сегментов тела конькобежца. Включение в модель аэродинамических сил необходимо, так как аэродинамическое сопротивление - основная тормозящая сила, действующая на конькобежцев. Коэффициенты аэродинамического сопротивления Сх для разных форм посадки конькобежцев в зависимости от скорости и вида бега: с руками или без рук, по прямой или по повороту - составили от 0,75 до 1,2 [8, 38]. Суммарная величина сопротивления воздуха для всего тела конькобежца (сила, приложенная к ОЦМ) в зависимости от формы посадки при скорости бега 15 м/c составляет 45-61 Н. Наибольшее воздействие силы аэродинамического сопротивления приходится на туловище - около 30% от суммарной силы. Аэродинамическое сопротивление голени и бедра ног не превышает 10 Н.

4. На четвертом этапе рассчитали кинематические характеристики имитационной модели бега на коньках. К ним относятся: длина шага, длительность фаз: свободного проката, одноопорного отталкивания и двухопорного отталкивания; средняя скорость по фазам, ширина "елочки", формы посадки конькобежцев.

Выше было сказано, что способ задания базисных точек кинетограммы существенно влияет на скорости и ускорения изучаемого движения и, значит, на результаты решения ОЗД. При моделировании бега на коньках для более точного задания линейных и угловых характеристик локомоций использовали данные видеосъемки конькобежцев. Перед тем как создать кинетограмму бега на ЭВМ, сначала методом биомеханической видеосьемки и компьютерных программ определяли углы, угловые скорости в суставах в трех положениях: в начале фазы "свободного проката" (рис. 1А); в начале одноопорного отталкивания (рис. 1Б); в начале двухопорного отталкивания (рис. 1В); в завершении двухопорного отталкивания (рис. 1Б).

Зная расстояние между масштабными метками на дорожке, определяли путь и среднюю скорость тазобедренного сустава (полюса модели) между базисными точками в продольном направлении.

Аналогичную последовательность в обработке кадров применяли и для видеоряда поперечных движений конькобежцев.

5. На пятом этапе в компьютерную модель включили данные по анатомическому строению мышц нижней конечности конькобежцев - точки крепления мышцы к костям, физиологический поперечник, длины мышечной и сухожильной частей, состав волокон; угол перистости [9].

6. На шестом этапе решали обратную задачу - определения динамики для 16-звенной пространственной модели тела человека.

Выходные параметры модели. В результате компьютерного моделирования бега на коньках определяли следующие биомеханические параметры:

а) управляющие (суставные) моменты;

б) механическую работу и мощность , развиваемую в суставах;

в) скорости 7 мышц нижней конечности и

г) силы тяги 7 мышц ноги.

Применение имитационного моделирования для определения биомеханических характеристик бега на коньках с рекордной скоростью. Продемонстрируем возможности метода имитационного моделирования с целью определения модельных динамических характеристик бега на коньках с рекордной скоростью. Для этого определили динамические и энергетические параметры, такие, как: а) механическая работа и б) мощность при различных скоростях бега, включая рекордную скорость 15 м/с.

Среднюю скорость бега в фазах, углы в суставах, фазовый состав движения определили на основе результатов биомеханического исследования темпо-ритмовых характеристик бега на прямой участников забегов на дистанциях 1500 и 5000 м зимних Олимпийских игр в Нагано и Солт-Лейк-Сити.

Механическая работа в зависимости от скорости бега. Моменты, направленные на разгибание в суставах (моменты относительно поперечных осей), придают ускоренное движение ОЦМ тела (рис. 2). Расчет механической работы в тазобедренном, коленном и голеностопном суставах толчковой ноги при разной скорости бега проводили в проекции на ось X инерциального базиса. Результаты расчетов представлены на рис. 3.

С увеличением скорости бега механическая работа в суставах не имеет однонаправленной тенденции к возрастанию. Так, работа в тазобедренном суставе почти не меняется - 74-69 Дж, в коленном - возрастает с 52 (V=11 м/с) до 92 Дж (V=15 м/с); а в голеностопном - увеличивается в 2,8 раза - с 55 (V=11 м/с) до 159 Дж (V=15 м/с).

Механическая мощность в суставах толчковой ноги. Помимо механической работы рассмотрим еще один показатель силовой активности мышц - мощность (также в проекции на ось X инерциального базиса). Мощность по своим составляющим: угловой скорости и моменту - в большей степени соответствует физиологическим особенностям функционирования мышцы, а именно зависимости "сила-скорость" . Увеличение скорости бега с 11 до 15 м/с меняет экстремум мощности в тазобедренном суставе на 24%. В коленном и голеностопном суставах с увеличением скорости бега максимальная мощность возрастет в два раза (рис. 4).

Заключение. Применили метод имитационного моделирования к задачам, связанным с изучением двигательной деятельности человека в экстремальных условиях. На примере бега на коньках с рекордной скоростью 15 м/с были определены "ведущие" суставы, в которых развивается максимальная мощность и совершается наибольшая механическая работа. Такими суставами являются коленный и голеностопный. С ростом скорости бега с 11 до 15 м/с механическая работа увеличивается в коленном суставе почти в два раза - с 52 до 92 Дж, в голеностопном - в три раза - с 55 до 159 Дж (см. рис. 3). Механическая суставная мощность - косвенный показатель напряженности мышечной работы - свидетельствует о том, что голеностопный сустав за счет шарнира между лезвием конька и ботинком становится ведущим суставом, обеспечивающим рост скорости бега до 15 м/с (см. рис. 4).

Характеристики

Тип файла
Документ
Размер
1,52 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6710
Авторов
на СтудИзбе
287
Средний доход
с одного платного файла
Обучение Подробнее